Skip to main content
Log in

Relativistic hadronic mechanics: Nonunitary, axiom-preserving completion of relativistic quantum mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The most majestic scientific achievement, of this century in mathematical beauty, axiomatic consistency, and experimental verifications has been special relativity with its unitary structure at the operator level, and canonical structure at the classical levels, which has turned out to be exactly valid for point particles moving in the homogenenous and isotropic vacuum (exterior dynamical problems). In recent decades a number of authors have studied nonunitary and noncanonical theories, here generally calleddeformations for the representation of broader conditions, such as extended and deformable particles moving within inhomogeneous and anisotrophic physical media (interior dynamical problems). In this paper we show that nonunitary deformations, including, q-, k-, quatum-, Lie-isotopic, Lie-admissible, and other deformations, even thoughmathematically correct, have a number of problematic aspects ofphysical character when formulated on conventional spaces over conditional fields, such as lack of invariance of the basic space-time units, ambiguous applicability to measurements, loss of Hermiticity-observability in time, lack of invariant numerical predictions, loss of the axions of special relativity, and others. We then show that the classical noncanonical counterparts of the above nonunitary deformations are equally afflicted by corresponding problems of physical consistency. We also show that the contemporary formulation of gravity is afflicted by similar problematic aspects because Riemannian spaces are noncanonical deformations of Minkowskian spaces, thus having noninvariant space-time units. We then point out that new mathematical methods, calledisotopies, genotopies, hyperstructures and their isoduals, offer the possibilities of constructing a nonunitary theory, known asrelativistic hadronic mechanics which: (1) is as axiomatically consistent as relativistic quantum mechanics, (2) preserves the abstract axioms of special relativity, and (3) results in a completion of the conventional mechanics much along the celebrated Einstein-Podolski-Rosen argument. A number of novel applications are indicated, such as a geometric unification of the special and general relativity via the isominkowskian geometry in which the two relativities are differentiated via the invariant basic unit, while preserving conventional Riemannian metrics, Einstein's field equations, and related experimental verifications; a novel operator form of gravity verifying the axioms of relativistic quantum mechanics under the universal isopoincaré symmetry; a new structure model of hadrons with conventional massive particles as physical constituents which is compatile with composite quarks and with established unitary classifications; and other novels applications in nuclear physics, astrophysics, theoretical biology, and other fields. The paper ends with the proposal of a number of new experiments, some of which may imply new practical applications, such as conceivable new forms of recycling nuclear waste. The achievement of axiomatic consistency in the study of the above physical problems has been possible for the first time in this paper thanks to mathematical advances that recently appeared in a special issue of theRendiconti Circolo Matematico Palermo, and in other journals identified in the Acknowledgements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Albert,Trans. Am. Math. Soc. 64, 552 (1948).

    Article  MathSciNet  Google Scholar 

  2. R. M. Santilli,Nuovo Cimento 51, 570 (1967); [2a];Meccanica 1, 3 (1969) [2b];Suppl. Nuovo Cimento 6, 1225 (1968) [2c].

    MathSciNet  Google Scholar 

  3. R. M. Santilli,Hadronic J. 1, 224 and 1267 (1978) [3a];Hadronic J. 1, 574 [3b];Phys. Rev. D. 20, 555 (1979) [3c];Foundations of Theoretical Mechanics, Vols. I (1978) and II (1983) (Springer, New York) [3d];Lie-Admissible Approach to the Hadronic Structure, Vol. I (1978), II (1982) (Hadronic Press, Palm Harbor, Florida) [3e];Ann. Phys. 103, 354 and 409,1105, 227 (1977) [3f]; “Invariant Lie-admissible formulation of Biedenharn's 1989 paper onq-deformations,” inBiedenharn's Memorial Volume, L. van der Merwe,et al., s., (Plenum, 1997), in press [3g]; M. Battler, M. McBee, and S. Smith, Web Site http://homel.gte.net/ibr/[3h].

    Google Scholar 

  4. R. M. Santilli,Nuovo Cimento Lett. 37, 545 (1983) [4a];Hadronic J. 8, 25 and 36 (1985) [4b];JINR Rapid Commun. 6, 24 (1993) [4c];J. Moscow Phys. Soc. 3, 255 (1993) [4d];Chin. J. Syst. Eng. Electr. 6, 177 (1996) [4e];Lett. Nuovo Cimento 3, 509, (1983) [4f].

    ADS  MathSciNet  Google Scholar 

  5. A. K. Aringazin, A. Jannussis, D. F. Lopez, M. Nishioka, and B. Veljanosky,Sanitlli's Lie-Isotopic Generalization of Galilei's and Einstein's Relativities (Kostarakis Publisher, Athens, Greece, 1990) [5a]. J. V. Kadeisvili,Santilli's Isotopies of contemporary Algebras, Geometries and Relativities (Hadronic Press, Florida, 1991, 2nd edn., Ukraine Academy of Sciences, Kiev, in press) [5b]. D. S. Sourlas and G. T. Tsagas,Mathematical Foundations of the Lie-Santilli Theory (Ukraine Academy of Science, Kiev, 1993) [5c]. Palm Harbor, Florida, 1994) [5d]. J. V. Kadeisvili,An introduction to the Lie-Santilli isotheory with Application to Quantum Gravity (Ukraine Academy of Science, Kiev in press) [5e]; J. V. Kadeisvili, inSymmetry Methods in Physics (Ya. S. Smorodinsky Memorial Volume, A. N. Sissakian, G. S. Pogosyan, and S. I. Vinitsky, eds, J.I.N.R., Dubna, Russia, 1994) [5f]. J. V. Kadeisvili,Math. Meth. Appl. Sci. 19, 362 (1996) [5g].

    Google Scholar 

  6. S. L. Adler,Phys. Rev. 17, 3212 (1978) [6a]. S. Okubo,Hadronic J. 5, 1667 (1982) [6b]. R. Mignani,Hadronic J. 5, 1120 (1982) [6c];Nuovo Cimento Lett. 39, 413 (1984) [6d]. A. Jannussis, R. Mignani, and D. SkaltsasPhysica A 187, 575 (1992) [6e]. A. O. E. Animalu,Hadronic J. 17, 349 (1995) [6f]. C. N. Ktorides, H. C. Myung, and R. M. Santilli,Phys. Rev. D. 22, 892 [6g]; T. Gill, J. Lindesay, and W. W. Zachary,Hadronic J. 17, 449 (1994) [6h]. E. B. Lin,Hadronic J. 11, 81 (1988) [6i]. A. J. Kalnay,Hadronic J.,6, 1 (1983) [6j]; A. Kalnay and R. M. Santilli,Hadronic J. 6, 1798 (1983) [6k]; J. Fronteay, A. Tellez Arenas, and R. M. Santilli,Hadronic J. 3 (1979) [6l]; R. Mignani, H. C. Myung, and R. M. Santilli,Hadronic J. 6, 1878 (1983) [6m]. A. O. E. Animalu,Hadronic J. 17, 349 (1994) [6n]. A. O. E. Animalu and R. M. Santilli, inHadronic Mechanics and Nonpotential Interactions (Nova Science, New York, 1990) [6o]. R. Mignani,Nuovo Cimento 43, 355 (1985) [6p]. M. Gasperinmi,Hadronic J. 7, 971 (1984) [6q]. A Jannussis, M. Mijatovic, and B. Veljanowski,Phys. Essays 4, 202 (1991) [6r]. D. Rapoport-Campodonico,Algebras, Groups and Geometries 8, 1 (1991) [6s]. M. Nishioka,Nuovo Cimento A 82, 351 (1984) [6t]. A. Jannussis, D. Brodimas, and R. Mignani,J. Phys. A. 24, L775 (1991) [6u]. G. Eder,Hadronic J. 4, 634 (1981) and5, 750 (1982) [6v]. R. M. Santilli,Revi. Tec. 18, 271 (1995) and19, 3 (1996) [6w]. R. M. Santilli,Lett. Nuovo Cimento 37, 337 (1983) [6x].

    Article  ADS  MathSciNet  Google Scholar 

  7. D. M. Norris et al.,Tomber's Bibliography and Index in Nonassociative Algebras (Hadronic Press, Palm Harbor, Florida, 1984).

    Google Scholar 

  8. L. C. Biernharn,J. Phys. A. 22, L873 (1989) [8a]. A. J. Macfarlane,J. Phys. A 22, L4581 (1989) [8b].

    Article  ADS  Google Scholar 

  9. V. Dobrev., inProceedings of the Second Wigner Symposium (World Scientific, Singapore, 1991). J. Lukierski, A. Novicki, H. Ruegg, and V. Tolstoy,Phys. Lett. B 264, 331 (1991). O. Ogivetski, W. B. Schmidke, J. Wess, and B. Zumino,Commun. Math. Phys. 50, 495 (1992). S. Giller, J. Kunz, P. Kosinky, M. Majewski, and P. Maslanka,Phys. Lett. B. 286, 57 (1992).

    Google Scholar 

  10. J. Lukierski, A. Nowiski, and H. Ruegg,Phys. Lett. B 293, 344 (1992). J. Lukierski, H. Ruegg and W. Rühl,Phys. Lett. B 313, 357 (1993). J. Lukierski and H. Ruegg,Phys. Lett. B 329, 189 (1994). S. Majid and H. Ruegg,Phys. Lett. B 334, 348 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  11. T. L. Curtis, B. Fairlie, and Z. K. Zachos, eds.,Quantum Groups (World, Scientific, Singapore, 1991). Mo-Lin Ge and Bao Heng Zhao, eds.Introduction to Quantum Groups and Integrable Massive Models of Quantum Field Theory (World Scientific, Singapore 1991). Yu. F. Smirnov and R. M. Asherova, eds.,Proceedings of the Fifth Workshop Symmetry Methods in Physics (JINR, Dubna, Russia, 1992).

    Google Scholar 

  12. D. F. Lopez, inSymmetry Methods in Physics (Memorial Volume dedicated to Ya. S. Smorodinsky, A. N. Sissakian, G. S. Pogosyan, and S. I. Vinitsky, eds., J.I.N.R., Dubna. Russia, 1994); andHadronic J. 16, 429 (1993).

    Google Scholar 

  13. Ellis, N. E., Mavromatos, and D. V. Nanopoulos inProceedings of the Erice Summer School, 31st Course: From Superstrings to the Origin of Space-Time (World Scientific, Singapore, 1996).

    Google Scholar 

  14. A. Jannussis and D. Skaltzas,Ann. Fond. L. de Broglie 18, 1137 (1993).

    Google Scholar 

  15. M. Razavy,Z. Phys. B 26, 201 (1977). H.-D. Doebner and G. A. Goldin,Phys. Lett. A 162, 397 (1992). H.-J. Wagner,Z. Phys. B 95, 261 (1994).

    Article  MathSciNet  Google Scholar 

  16. D. Schuch,Phys. Rev. A 55, 935 [16a]; and inNew Frontiers of Hadronic Mechanics, T. L. Gill, Editor (Hadronic Press, Palm Harbor, Florida, 1996) [16b].

  17. S. Weinberg,Ann. Phys. 194, 336 (1989) [17a]. T. F. Jordan,Ann. Phys. 225, 83 (1993) [17b].

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Jannussis, R. Mignani, and R. M. Santilli,Ann. Fond L. de Broglie 18, 371 (1993).

    Google Scholar 

  19. A. Jannussis et al.,Nuovo Cimento B 103, 17 and 537 (1989).104, 33 and 53 (1989),108, 57 (1993);Phys. Lett. A 132, 324 (1988). S. Sebawe Abdallahet al., Physica A. 163, 822 (1990).202, 301 (1994);Phys. Rev. A 48, 1526 and 3174 (1993),J. Mod. Opt. 39, 771 and 1067 (1992);40, 441, 1351, and 1369 (1993);Phys. Lett. A 181, 341 (1993). R. J. McDermott and A. I. Solomon, “Double squeezing in generalq-coherent states,”J. Phys. A, in press.

    ADS  MathSciNet  Google Scholar 

  20. Cl. George, F. Henin, F. Mayné, and I. Prigogine,Hadronic J. 1, 520 (1978).

    MathSciNet  Google Scholar 

  21. M. J. G. Veltman, inMethods in Field Theory (R. Ballan and J. Zinn-Justin, eds., North-Holland, Amsterdam, 1976) [21a]. C. J. Isham, R. Penrose, and D. W. Sciama, eds.,Quantum Gravity 2 (Oxford University Press, Oxford, 1981) [21b]. M. Keiser and R. Jantzen, eds.,Proceedings of the VII M. Grossmann Meeting, on General Relativity (World Scientific, Singapore, 1996) [21a].

    Google Scholar 

  22. R. M. Santilli,Elements of Hadronic Mechanics, Vol. 1:Mathematical Foundations [22a], II:Theoretical Foundations [22b] (2nd edn., Ukraine Academy of Sciences Kiev, 1995).

    Google Scholar 

  23. P. Vetro, ed.,Rend. Circ. Mat. Palermo. Suppl. 42 (1996) [23a]. R. M. Santilli,Rend. Circ. Mat Palermo, Suppl. 42, 7 (1996) [23b]. J. V. Kadeisvili,Rend. Circ. Mat. Palermo, Suppl. 42, 83 (1996) [23c].

  24. H. C. Myung and R. M. Santilli,Hadronic J. 5, 1277 (1982).

    MathSciNet  Google Scholar 

  25. R. Mignani,Hadronic J. 5, 1120 (1982).

    MathSciNet  Google Scholar 

  26. R. M. Santilli,Algebras, Groups and Geometries 10, 273 (1993).

    MathSciNet  Google Scholar 

  27. D. Bohm,Quantum Theory (Dover, New York, 1979) [27a]. R. M. Santili,Commun. Theor. Phys. 3, 47 (1994) [27b].

    Google Scholar 

  28. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Article  ADS  Google Scholar 

  29. J. Von Neumann,The Mathermatical Foundations of Quantum Mechanics (Princeton University Press, Princeton, N. J., 1955).

    Google Scholar 

  30. J. S. Bell,Physics 1, 195 (1965).

    Google Scholar 

  31. P. Caldirola,Nuovo Cimento 3, 297 (1956);Lett. Nuovo Cimento 16, 151 (1976). A. Jannussiset al. Lett. Nuovo Cimento 29 427 (1980). D. Lee,Phys. Rev. Lett. 122b, 217 (1983). D. Finkelstein,Int. J. Theor. Phys. 27, 473 (1985). C. Wolf,Ann. Fond. L. de Broglie 21, 1 (1996).

    MathSciNet  Google Scholar 

  32. J. V. Kadeisvili,Algebras, Groups and Geometries 9, 283, and 319 (1992) [32a]. G. T. Tsagas and D. S. Sourlas,Algebras, Groups and Geometries 12, 1 (1995) [32b].

    MathSciNet  Google Scholar 

  33. A. K. Aringazin,Hadronic J. 12, 71 (1989); A. K. Aringazin and K. M. Aringazin, inFrontiers of Fundamental Physics, M. Barone and F. Selleri, eds., (Plenum, New York, 1994).

    Google Scholar 

  34. R. M. Santilli, inProceedings of the VII M. Grossmann Meeting on General Relativity (M. Keiser and R. Jantzen, eds., World Scientific, Singapore, 1996) [34a]; inGravity Particles and Space-Time (P. Pronin and G. Sardanashvily, eds., World Scientific, Singapore, 1995) [34b];Commun. Theor. Phys. 4, 1 (1995) [34c]; “Isominkowskian geometry and its isodual,” submitted for publication [34d].

    Google Scholar 

  35. C. Illert and R. M. Santilli,Foundations of Theoretical Conchology (Hadronic Press, Palm Harbor, Florida, 1995) [35a]. R. M. Santilli,Isotopic, Genotopic and Hyperstructural Methods in Theoretical Biology (Ukraine Academy of Science, Kiev, 1996) [35b].

    MATH  Google Scholar 

  36. P. A. M. Dirac,The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1958).

    MATH  Google Scholar 

  37. R. M. Santilli,Commun. Theor. Phys. 3, 153 (1994) [37a],Hadronic J. 17, 257 (1994) [37b]; inNew Frontiers of Hadronic Mechanics, T. L. Gill, ed., (Hadronic Press, Palm Harbor, Florida, 1996) [37c];Hyperfine Interaction 20 (1997) in press. [37d];Ann. Phys. 83, 108 (1974) [37e]; M. Holzsheiteret al. Hyperfine Interactions 20, (1997), in press [37f].

    MathSciNet  Google Scholar 

  38. R. M. Santilli,Found Phys. 111, 383 (1981).

    Article  MathSciNet  Google Scholar 

  39. D. I. Bloch'intsev,Phys. Rev. Lett. 12, 272 (1964); [39a]. L. B. Redei,Phys. Rev. 145, 999 (1996) [39b]. D. Y. Kim,Hadronic J. 1, 343 (1978) [39c]. J. Elliset al. Nucl. Phys. B 176, 61 (1980) [39d]. A. Zee,Phys. Rev. D 25, 1864 (1982) [39e]. R. M. Santilli,Lett. Nuovo Cimento 33, 145 (1982) [39f]. V. de Sabbata and M. Gasperini,Lett. Nuovo Cimento 34, 337 (1982) [39g]. H. B. Nielsen and I. Picek,Nucl. Phys. B. 211, 269 (1983) [39g]. M. Gasperini,Phys. Lett. B 177, 51 (1986) [39i]. Yu. Aronson,Hadronic J. 19, 205 (1996) [39i].

    Google Scholar 

  40. B. H. Aronson et al.Phys. Rev. D 28, 476 and 495 (1983).

    Article  ADS  Google Scholar 

  41. N. Grossman et al.,Phys. Rev. Lett. 59, 18 (1987).

    Article  ADS  Google Scholar 

  42. B. Lörstad,Int. J. Mod. Phys. A 4, 2861 (1989).

    Article  ADS  Google Scholar 

  43. UA1 Collaboration,Phys. Lett. B 226, 410 (1989).

    Article  Google Scholar 

  44. R. Adler et al.Phys. Rev. C 63, 541 (1994).

    Google Scholar 

  45. F. Cardone, R. Mignani, and R. M. Santilli,J. Phys. G. 18, L61 [42a] and L141 [42b] (1992).

    Article  ADS  Google Scholar 

  46. R. M. Santilli,Hadronic J. 15 (1992).

  47. F. Cardone and R. Mignani, Preprint University of Rome No. 894.

  48. R. M. Santilli,Commun. Theor. Phys. 4, 123 (1995) [48a];Int. J. Phys. 1, 1 (1995) [48b].

    MathSciNet  Google Scholar 

  49. A. O. Animalu and R. M. Santilli,Int. J. Quant. Chem. 29, 175 (1995).

    Article  Google Scholar 

  50. R. M. Santilli, inProceedings International Conference “Dubna Deuteron 1993,” V. K. Lukyanov, et al., eds., (J.I.N.R., Dubna, Russia, 1994) [50a]; “Exact representation of total nuclear magnetic moments via relativistic hadronic mechanics,” submitted for publication [50b].

    Google Scholar 

  51. R. M. Santilli,Hadronic J. Suppl. 4A, 267 (1988) [51a]. R. Mignani,Phys. Essay 5, 531 (1992) [51b]. R. M. Santilli, inFrontiers of Fundamental Physics, M. Barone and F. Selleri, eds., (Plenum, New York, 1994) [51c].

    MathSciNet  Google Scholar 

  52. H. Rauch,Hadronic J. 4, 1280 (1984).

    Google Scholar 

  53. A. P. Mills, Jr.,Hadronic J. 19, 77 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santilli, R.M. Relativistic hadronic mechanics: Nonunitary, axiom-preserving completion of relativistic quantum mechanics. Found Phys 27, 625–729 (1997). https://doi.org/10.1007/BF02550172

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02550172

Keywords

Navigation