Skip to main content
Log in

Estimating the body size of eocene primates: A comparison of results from dental and postcranial variables

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Estimating body weights for fossil primates is an important step in reconstructing aspects of their behavior and ecology. To date, the body size of Eocene euprimates—the Adapidae and Omomyidae—has been estimated only from molar area. Studies on other primates and mammals demonstrate that body weights estimated from teeth are not always concordant with those estimated from postcranial variables. We derive estimates for Eocene primates based on tarsal bone variables to compare with previously published values derived from dental measures. Stepsirhine-wide, family-level, and subfamily-level models are developed and compared. We also compare the accuracy and precision of dental- and tarsal-based regression models for predicting weight in extant species. Tarsal bone and dental area measures prove to be equally robust in predicting body weight; however, highly disparate estimates are often obtained from different variables. Equations based on lower-level taxonomic groups perform better than more widely based models. However, all equations considered yield fairly large errors, which can affect interpretations of paleoecology. The choice of the more robust prediction is not straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiello, L. C. (1981). The allometry of primate body proportions.Symp. Zool. Soc. Lond. 48: 331–358.

    Google Scholar 

  • Baskerville, G. L. (1972). Use of logarithmic regression in the estimation of plant biomass.Can. J. Forestry Res. 2: 49–53.

    Google Scholar 

  • Bauchot, R., and Stephan, H. (1964). Donnees nouvelles sur l'encephalisation des Insectivores et des Prosimiens.Mammalia 30: 160–196.

    Article  Google Scholar 

  • Beauchamp, J. J., and Olson, J. S. (1973). Corrections for bias in regression estimates after logarithmic transformation.Ecology 54: 1403–1407.

    Article  Google Scholar 

  • Calder, W. A. (1984).Size, Function and Life History, Cambridge University Press, Cambridge.

    Google Scholar 

  • Conroy, C. C. (1987). Problems of body-weight estimation of fossil primates.Int. J. Primatol. 8: 115–138.

    Google Scholar 

  • Covert, H. H. (1985).The Adaptions and Evolutionary Relationships of the Eocene Primate Subfamily Notharctinae, Ph.D. dissertation, Duke University, Durham, N.C.

    Google Scholar 

  • Covert, H. H. (1986). Biology of Early Cenozoic primates. In Swindler, D. S. (ed.),Comparative Primate Biology, Vol. 1, Alan R. Liss, New York, pp. 335–359.

    Google Scholar 

  • Dagosto, M. (1986).The Joints of the Tarsus in the Strepsirhine Primates, Ph.D. dissertation, City University of New York, New York.

    Google Scholar 

  • Damuth, J., and MacFadden, B. J. (1990).Body Size in Mammalian Paleobiology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Demes, B., and Jungers, W. L. (1989). Functional differentiation of long bones in lorises.Folia primatol. 52: 58–69.

    PubMed  CAS  Google Scholar 

  • Fleagle, J. G. (1978). Size distributions in living and fossil primate faunas.Paleobiology 4: 67–76.

    Google Scholar 

  • Fleagle, J. G. (1985). Size and adaptation in primates. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 1–20.

    Google Scholar 

  • Gebo, D. L. (1988). Foot morphology and locomotor adaptation in Eocene primates.Folia Primatol. 50: 3–41.

    PubMed  CAS  Google Scholar 

  • Gebo, D. L., Dagosto, M., and Rose, K. D. (1991). Foot morphology and evolution of early EoceneCantius.Am. J. Phys. Anthropol. 86: 51–73.

    Article  Google Scholar 

  • Gingerich, P. D. (1981). Early Cenozoic Omomyidae and the evolutionary history of the tarsilform primates.J. Hum. Evol. 10: 345–374.

    Article  Google Scholar 

  • Gingerich, P. D. (1990). Prediction of body mass in mammalian species from long bone lengths and diameters.Contrib. Mus. Paleontol. Univ. Mich. 28: 79–92.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., And Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils.Am. J. Phys. Anthropol. 1982: 81–100.

    Article  Google Scholar 

  • Gregory, W. K. (1920). On the structure and relations ofNotharctus, an American Eocene primate.Mem. Am. Mus. Nat. Hist. 3: 51–243.

    Google Scholar 

  • Jungers, W. L. (1985a).Size and Scaling in Primate Biology, Plenum Press, New York.

    Google Scholar 

  • Jungers, W. L. (1985b). Body size and scaling of limb proportions in primates. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 345–382.

    Google Scholar 

  • Jungers, W. L. (1988a). Lucy's length: Stature reconstruction inAustralopithecus afarensis (A.L.288-1) with implications for other small-bodied hominids.Am. J. Phys. Anthropol. 76: 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Jungers, W. L. (1988b). Relative joint size and hominid locomotor adaptations with implications for the evolution of hominid bipedalism.J. Hum. Evol. 17: 247–265.

    Article  Google Scholar 

  • Jungers, W. L. (1990). Problem and methods in reconstructing body size in fossil primates. In Damuth, J., and MacFadden, B. J. (eds.),Body Size in Mammalian Paleobiology, Cambridge University Press, Cambridge, pp. 103–118.

    Google Scholar 

  • Kay, R. F. (1975). The functional adaptations of primate molar teeth.Am. J. Phys. Anthropol. 43: 195–216.

    Article  PubMed  CAS  Google Scholar 

  • Kay, R. F., and Simons, E. (1980). The ecology of Oligocene African Anthropoidea.Int. J. Primatol. 1: 21–37.

    Google Scholar 

  • La Barbera, M. (1989). Analyzing body size as a factor in ecology and evolution.Annu. Rev. Ecol. Syst. 20: 97–117.

    Article  Google Scholar 

  • MacPhee, R. D. E., and Jacobs, L. L. (1986).Nycticeboides simpsoni and the morphology adaptations, and relationships of Miocene Siwalik Lorisidae. In Flanagan, K. M., and Lillegraven, J. A. (eds.),Vertebrates, Phylogeny, and Philosophy: contributions to Geology, University of Wyoming, Special Paper 3, pp. 131–162.

  • Martin, R. D. (1982). Adaptation and body size in primates.Z. Morph. Anthropol. 71: 115–124.

    Google Scholar 

  • Meier, B., Albiganac, R., Perrieras, A., Rumpler, Y., and Wright, P. C. (1987). A new species ofHapalemur (Primates) from Southeast Madagascar.Folia Primatol. 48: 211–215.

    PubMed  CAS  Google Scholar 

  • Montogomery, D. C., and Peck, E. A. (1982).Introduction to Linear Regression Analysis, Wiley, New York.

    Google Scholar 

  • Nash, L. T., Bearder, S. K., and Olson, T. R. (1989). Synopsis ofGalago species characteristics.Int. J. Primatol. 10: 57–80.

    Google Scholar 

  • Peters, R. H. (1983).The Ecological Implications of Body Size, Cambridge University Press, Cambridge.

    Google Scholar 

  • Radinsky, L. (1982). Some cautionary notes on making inferences about relative brain size. In Amstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York, pp. 29–37.

    Google Scholar 

  • Ruff, C. (1987). Structural allometry of the femur and tibia in Hominoidea andMacaca.Folia Primatol. 48: 9–49.

    PubMed  CAS  Google Scholar 

  • Ruff, C. (1988). Hindlimb articular surface allometry in Hominoidea andMacaca, with comparison to diaphyseal scaling.J. Hum. Evol. 17: 687–714.

    Article  Google Scholar 

  • Ruff, C. (1990). Body mass and hindlimb bone cross-sectional and articular dimensions in anthropoid primates. In Damuth, J., and MacFadden, B. J. (eds.),Body Size in Mammalian Paleobiology, Cambridge University Press, Cambridge, pp. 119–150.

    Google Scholar 

  • Ruff, C., Walker, A., and Teaford, M. F. (1989). Body mass, sexual dimorphism, and femoral proportions ofProconsul from Rusinga and Mfangano Islands, Kenya.J. Hum. Evol. 18: 515–536.

    Article  Google Scholar 

  • Schmidt-Nielsen, K. (1984).Scaling: Why Is Animal Size So Important? Cambridge University Press, Cambridge.

    Google Scholar 

  • Scott, K. M. (1983). Prediction of body weight of fossil Artiodactyla.Zool. J. Linn. Soc. 77: 199–215.

    Google Scholar 

  • Simons, E. L. (1988). A new species ofPropithecus (Primates) from Northeast Madagascar.Folia Primatol. 50: 143–151.

    PubMed  CAS  Google Scholar 

  • Simpson, G. G., Roe, A., and Lewontin, R. C. (1960).Quantitative Zoology, Harcourt, Brace, and World, New York.

    Google Scholar 

  • Smith, R. J. (1984). Allometric scaling in comparative biology: Problems of concept and method.Am. J. Physiol. 246: R152–160.

    PubMed  CAS  Google Scholar 

  • Smith, R. J. (1985). The present as a key to the past: Body weight of Miocene hominoids as a test of allometric methods for paleontological inferences. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 437–448.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. (1981).Biometry, W. H. Freeman, San Francisco.

    Google Scholar 

  • Sprugel, D. G. (1983). Correcting for bias in long-transformed allometric equations.Ecology 64: 209–210.

    Article  Google Scholar 

  • Steudel, K. (1985). Allometric perspectives on fossil catarrhine morphology. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 449–475.

    Google Scholar 

  • Swartz, (1989). The functional morphology of weight bearing: Limb joint surface area allometry in anthropoid primates.J. Zool. Lond. 218: 441–460.

    Article  Google Scholar 

  • Szalay, F. S. (1976). Systematics of the Omomyidae (Tarsiiformes, Primates).Bull. Am. Mus. Nat. Hist. 156: 157–450.

    Google Scholar 

  • Tattersall, I. (1982).The Primates of Madagascar, Columbia University Press, New York.

    Google Scholar 

  • Wilson, J. M., Stewart, P. D., Ramangason, G.-S., Denning, A. M., and Hutchings, M. S. (1989). Ecology and conservation of the crowned lemur,Lemur coronatus, at Ankarana, N. Madagascar,Folia Primatol. 52: 1–26.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagosto, M., Terranova, C.J. Estimating the body size of eocene primates: A comparison of results from dental and postcranial variables. International Journal of Primatology 13, 307–344 (1992). https://doi.org/10.1007/BF02547818

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02547818

Key Words

Navigation