Skip to main content
Log in

Dietary menhaden oil enhances mitomycin C antitumor activity toward human mammary carcinoma MX-1

  • Article
  • Published:
Lipids

Abstract

In the present study, we investigated the effects of high levels of dietary fish oil on the growth of MX-1 human mammary carcinoma and its response to mitomycin C (MC) treatment in athymic mice. We found that high levels of dietary fish oil (20% menhaden oil+5% corn oil, w/w) compared to a control diet (5% corn oil, w/w) not only lowered the tumor growth rate, but also increased the tumor response to MC treatment. We also found that high levels of dietary fish oil significantly increased the activities of tumor xanthine oxidase and DT-diaphorase, which are proposed to be involved in the bioreductive activation of MC. Since menhaden oil is highly unsaturated, its intake caused a significant increase in the degree of fatty acid unsaturation in tumor membrane phospholipids. This alteration in tumor membrane phospholipids made the tumor more susceptible to oxidative stress, as indicated by the increased levels of both endogenous lipid peroxidation and protein oxidation after feeding the host animals the menhaden oil diet. In addition, the tumor antioxidant enzyme activities, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPOx), and glutathione S-transferase peroxidase (GSTPx), were all significantly enhanced by feeding a diet high in fish oil. MC treatment caused further increases in tumor lipid peroxidation and protein oxidation, as well as in the activities of CAT, SOD, GPOx, and GSTPx, suggesting that MC causes oxidative stress in this tumor model which is exacerbated by feeding a diet high in menhaden oil. Thus, feeding a diet rich in menhaden oil decreased the growth of human mammary carcinoma MX-1, increased its responsiveness to MC, and increased its susceptibility to endogenous and MC-induced oxidative stress, and increased the tumor activities of two enzymes proposed to be involved in the bioactivation of MC, that is, DT-diaphorase and xanthine oxidase. These findings support a role of these two enzymes in the bioactivating of MC and indicate that the type of dietary fat may be important in tumor response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

CB5R:

cytochrome b5 reductase

CCR:

cytochrome C reductase

CO:

corn oil

DHA:

docosahexaenoic acid

DNPH:

3,4-dinitrophenyl hydrazine

DTD:

DT-diaphorase

EPA:

eicosapentaenoic acid

GPOx:

glutathione peroxidase

GR:

glutathione reductase

GSH:

glutathione

GSSG:

glutathione disulfide

GST:

glutathione S-transferase

GSTPx:

glutathione S-transferase peroxidase

HNE:

4-hydroxy-nonenal

MC:

mitomycin C

MO:

menhaden oil

PL:

phospholipid

PUFAs:

polyunsaturated fatty acids

SOD:

superoxide dismutase

TBARS:

thiobarbituric reactive substances

T/C:

treat/control ratio

XD:

xanthine dehydrogenase

XO:

xanthine oxidase

References

  1. Welsch, C.W. (1992) Relationship Between Dietary Fat and Experimental Mammary Tumorigenesis: A Review and Critique,Cancer Res. 52, 2040s-2048s.

    PubMed  CAS  Google Scholar 

  2. Carroll, K.K. (1992) Dietary Fat and Breast Cancer,Lipids 27, 793–797.

    PubMed  CAS  Google Scholar 

  3. Welsch, C.W. (1987) Enhancement of Mammary Tumorigenesis by Dietary Fat: Review of Potential Mechanisms,Am. J. Clin. Nutr. 45, 192–202.

    PubMed  CAS  Google Scholar 

  4. Pariza, M.W. (1988) Dietary Fat and Cancer Risk: Evidence and Research Needs,Ann. Rev. Nutr. 8, 167–183.

    Article  CAS  Google Scholar 

  5. Gonzalez, M.J., Schemmel, R.A., Dugan, L., Jr., Gray, J.I., and Welsch, C.W. (1993) Dietary Fish Oil Inhibits Human Breast Carcinoma Growth: A Function of Increased Lipid Peroxidation,Lipids, 28, 827–832.

    PubMed  CAS  Google Scholar 

  6. Kaasgaard, S.G., Holmer, G., Hoy, C-E, Behrens, W.A., and Beare-Rogers, J.L. (1992) Effects of Dietary Linseed Oil Marine Oil on Lipid Peroxidation in Monkey Liverin vivo andin vitro, Lipids 27, 740–745.

    PubMed  CAS  Google Scholar 

  7. Powis, G. (1989) Free Radical Formation by Antitumor Quinones,Free Radical Biology & Medicine 6, 63–101.

    Article  CAS  Google Scholar 

  8. Sinha, B.K. (1989) Free Radicals in Antitumor Drug Pharmacology,Chem. Biol. Interactions 69, 293–317.

    Article  CAS  Google Scholar 

  9. Sinha, B.K., and Mimnaugh, E.G. (1990) Free Radicals and Anticancer Drug Resistance by Certain Tumors,Free Radical Biology & Medicine 8, 567–581.

    Article  CAS  Google Scholar 

  10. Riley, R.J., and Workman, P. (1992) DT-Diaphorase and Cancer Chemotherapy,Biochem. Pharmacol. 43, 1657–1669.

    Article  PubMed  CAS  Google Scholar 

  11. Yang, C.S., Brady, J.F., and Hong, J.Y. (1992) Dietary Effects on Cytochrome P450, Xenobiotic Metabolism, and Toxicity,FASEB J. 6, 737–744.

    PubMed  CAS  Google Scholar 

  12. Yoo, J-S.H., Hong, J.Y., Ning, S.M., and Yang, C.S. (1990) Roles of Dietary Corn Oil in the Regulation of Cytochrome P450 and Glutathione S-Transferase,J. Nutr. 120, 1718–1726.

    PubMed  CAS  Google Scholar 

  13. Yoo, J-S.H., Ning, S.M., Pantuck, C.B., Pantuck, E.J. and Yang, C.S. (1991) Regulation of Hepatic Microsomal Cytochrome P450IIE1 Level by Dietary Lipids and Carbohydrates in Rats,J. Nutr. 121, 959–965.

    PubMed  CAS  Google Scholar 

  14. Shao, Y., Pardini, L., and Pardini, R.S. (1994) Enhancement of the Antineoplastic Effect of Mitomycin C by Dietary Fat,Cancer Res. 54, 6452–6457.

    PubMed  CAS  Google Scholar 

  15. American Institute of Nutrition (1977) Report of the American Institute of Nutrition Ad Hoc Committee on Standards for Nutritional Studies,J. Nutr. 107, 1340–1348.

    Google Scholar 

  16. American Institute of Nutrition (1980) Second Report of the Ad Hoc Committee on Standards for Nutritional Studies,J. Nutr. 110, 1726.

    Google Scholar 

  17. Birt, D.F., White, L.T., Choi, B., and Pelling, J.C. (1989) Dietary Fat Effects on the Initiation and Promotion of Two-Stage Skin Tumorigenesis in the SENCAR Mouse,Cancer Res. 49, 4170–4174.

    PubMed  CAS  Google Scholar 

  18. Borgeson, C.E., Pardini, L., Pardini, R.S., and Reitz, R.C. (1989) Effects of Dietary Fish Oil on Human Mammary Carcinoma and on Lipid-Metabolizing Enzymes,Lipids 24, 290–295.

    Article  PubMed  CAS  Google Scholar 

  19. Ernster, L. (1967) DT-Diaphorase,Methods in Enzymology 10, 309–317.

    CAS  Google Scholar 

  20. Benson, A.M., Hunkler, M.J., and Talalay, P. (1980) Increase of NAD(P)H:Quinone Reductase by Dietary Antioxidants: Possible Role in Protection Against Carcinogenesis and Toxicity,Proc. Natl. Acad. Sci. USA. 77, 5216–5220.

    Article  PubMed  CAS  Google Scholar 

  21. Sukiman, S.A., and Stevens, J.B. (1976) Purification of Xanthine Dehydrogenase: A Rapid Procedure with High Enzyme Yield,Arch. Biochem. Biophys. 258, 2040s-2048s.

    Google Scholar 

  22. Masters, B.S.S., Williams, C.H., and Kamin, H. (1967) The Preparation and Properties of Microsomal TPNH-Cytochrome C Reductase from Pig Liver,Methods in Enzymology 10, 565–573.

    CAS  Google Scholar 

  23. Yasukochi, Y., and Masters, B.S.S. (1976) Some Properties of a Detergent Solubilized NADPH-Cytochrome C (Cytochrome P450) Reductase Purified by Biospecific Affinity Chromatography,J. Biol. Chem. 251, 5337–5344.

    PubMed  CAS  Google Scholar 

  24. Oberely, L.W., and Spitz, D.R. (1984) Assay of Superoxide Dismutase in Tumor Tissue,Methods in Enzymology 105, 457–464.

    Google Scholar 

  25. Aebi, H. (1984) Catalasein vitro, Methods in Enzymology 105, 121.

    PubMed  CAS  Google Scholar 

  26. Strauss, R.G., Snyder, E.L., Wallace, P.D., and Rosenburg, T.G. (1980) Oxygen Detoxification Enzymes in Neutrophils of Infants and Their Mothers,J. Lab. Clin. Med. 95, 897.

    PubMed  CAS  Google Scholar 

  27. Prohaska, J.R., Oh, S-H., Hockstra, W.G., and Ganther, H.E. (1977) Glutathione Peroxidase: Inhibition by Cyanide and Release of Selenium,Biochem. Biophys. Res. Comm. 74, 64–71.

    Article  PubMed  CAS  Google Scholar 

  28. Racker, E. (1955) Glutathione Reductase,Methods in Enzymology 2, 722.

    Google Scholar 

  29. Mannervick, B., and Guthenberg, C. (1981) Glutathione Transferase: Human Placenta,Methods in Enzymology 77, 231–235.

    Google Scholar 

  30. Buege, J.A., and Aust, S.D. (1978) Microsomal Lipid Peroxidation,Methods in Enzymology LII, 302–310.

    Google Scholar 

  31. Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A-G., Ahn, B., Shalteil, S., and Stadtman, E.R. (1990) Determination of Carbonyl Content in Oxidatively Modified Proteins,Methods in Enzymology 77, 231–235.

    Google Scholar 

  32. Fariss, M.W., and Reed, D.J. (1987) High-Performance Liquid Chromatography if Thiols and Disulfides: Dinitrophenol Derivatives,Methods in Enzymology 143, 101–109.

    Article  PubMed  CAS  Google Scholar 

  33. Aksoy, M., Berger, M.R., and Schmahl, D. (1987) The Influence of Different Levels of Dietary Fat on the Incidence and Growth of MNU-Induced Mammary Carcinoma in Rats,Nutr. and Cancer 9, 227–235.

    Article  CAS  Google Scholar 

  34. Gabor, H., and Abraham, S. (1986) Effect of Dietary Menhaden Oil on Tumor Cell Loss and the Accumulation of Mass of a Transplantable Mammary Adenocarcinoma in BALB/c Mice,J. Natl. Cancer Inst. 76, 1223–1229.

    PubMed  CAS  Google Scholar 

  35. Hudson, E.A., Beck, S.A., and Tisdale, M.J. (1993) Kinetics of the Inhibition of Tumor Growth in Mice by Eicosapentaenoic Acid Reversed by Linoleic Acid,Biochem. Pharmac. 45, 2189–2194.

    Article  CAS  Google Scholar 

  36. Ip, C., Carter, C.A., and Ip, M.M. (1985) Requirement of Essential Fatty Acid for Mammary Tumorigenesis in the Rat,Cancer Res., 45, 1997–2001.

    PubMed  CAS  Google Scholar 

  37. Burns, A., Lin, Y-G., Gibson, R., and Jamieson, D. (1991) The Effect of a Fish Oil Enriched Diet on Oxygen Toxicity and Lipid Peroxidation in Mice,Biochem. Pharmacol. 42, 1353–1360.

    Article  PubMed  CAS  Google Scholar 

  38. Javouhey-Donzel, A., Guenot, L., Naupoil, V., Rochette, L., and Rocquelin, G. (1993) Rat Vitamin E Status and Heart Lipid Peroxidation: Effect of Dietary α-Linolenic Acid and Marine n−3 Fatty Acids,Lipids 28, 651–655.

    PubMed  CAS  Google Scholar 

  39. Chen, L-C., Boissonneault, G., Hayek, M.G., and Chow, C.K. (1993) Dietary Fat Effects on Hepatic Lipid Peroxidation and Enzymes of H2O2 Metabolism and NADPH Generation,Lipids 28, 657–662.

    PubMed  CAS  Google Scholar 

  40. Cho, S-H., and Choi, Y-S. (1994) Lipid Peroxidation and Antioxidant Status Is Affected by Different Vitamin E Levels When Feeding Fish Oil,Lipids 29, 47–52.

    PubMed  CAS  Google Scholar 

  41. Gonzalez, M.J. (1992) Lipid Peroxidation and Tumor Growth: An Inverse Relationship,Med. Hypotheses 38, 106–110.

    Article  PubMed  CAS  Google Scholar 

  42. Spector, A.A., and Yorek, M.A. (1985) Membrane Lipid Composition and Cellular Function,J. Lipid Res. 26, 1015–1035.

    PubMed  CAS  Google Scholar 

  43. Spector, A.A., and Burns, C.P. (1987) Biological and Therapeutic Potential of Membrane Lipid Modification in Tumors,Cancer Res. 47, 4529–4537.

    PubMed  CAS  Google Scholar 

  44. Farber, J.L., Kyle, M.E., and Cleman, J.B. (1990) Mechanisms of Cell Injury by Activated Oxygen Species,Lab. Invest. 62, 670–679.

    PubMed  CAS  Google Scholar 

  45. Roubal, W.T., and Tappel, A.L. (1966) Damage to Proteins, Enzymes, and Amino Acids by Peroxidizing Lipids,Arch. Biochem. Biophys. 113, 5–8.

    Article  PubMed  CAS  Google Scholar 

  46. Reiss, U., and Tappel, A.L. (1973) Fluorescent Product Formation and Changes in Structure of DNA Reacted with Peroxidizing Arachidonic Acid,Lipids 8, 199–202.

    PubMed  CAS  Google Scholar 

  47. Dianzani, M.U. (1982) inFree Radicals, Lipid Peroxidation and Cancer (McBrien, D.C., and Slater, T.F., eds.) pp. 129–158, Academic Press, London.

    Google Scholar 

  48. Bull, A.W., Nigro, N.D., and Marnett, J.J. (1988) Structural Requirements for Stimulation of Colonic Cell Proliferation by Oxidized Fatty Acids,Cancer Res. 48, 1771–1776.

    PubMed  CAS  Google Scholar 

  49. King, M.M., Balley, D.M., Gibson, D.D., Pitha, J.V., and McCay, P.B. (1979) Incidence and Growth of Mammary Tumors Induced by 7,12-Dimethyl-benz[a]anthracene as Related to the Dietary Content of Fat and Antioxidant,J. Natl. Cancer Inst. 63, 657–663.

    PubMed  CAS  Google Scholar 

  50. Esterbauer, H., Schaur, R.J., and Zollner, H. (1991) Chemistry and Biochemistry of 4-Hydroxynonenal, Malonaldehyde, and Related Aldehydes,Free Rad. Biol. Med. 11, 81–129.

    Article  PubMed  CAS  Google Scholar 

  51. Schauenstein, E. (1982) Effects of Low Concentrations of Aldehydes on Tumor Cells and Tumor Growth, inFree Radicals, Lipid Peroxidation and Cancer (McBrien, D.C., and Slater, T.F., eds.) pp. 159–171, Academic Press, London.

    Google Scholar 

  52. Khoschsorur, G., Schaur, R., Schauenstein, E., Tillian, H.M., and Reiter, M. (1981) Intra-Cellular Effects of Hydroxy Alkenals on Animal Tumors,Z. Naturforsch 36, 572–578.

    CAS  Google Scholar 

  53. Haupthlorenz, S., Esterbauer, H., Moll, W., Pumpel, R., Schauenstein, E., and Puschendorf, B. (1985) Effects of the Lipid Peroxidation Product 4-Hydroxy Nonenal and Related Aldehydes on Proliferation and Viability of Cultured Ehrlich Ascites Tumor Cells,Biochem. Pharmac. 34, 3803–3809.

    Article  Google Scholar 

  54. Bickis, I.J., Schauenstein, E., and Taufer, M. (1968) Effects of Hydroxypentenal on the Metabolism of Tumor Cells and Normal Cells,Monatsa. Chem. 100, 1077–1104.

    Article  Google Scholar 

  55. Cadenas, E., Muller, A., Brigelius, R., Esterbauer, A., and Sies H. (1983) Effects of 4-Hydroxy Nonenal on Isolated Hepatocytes,Biochem. J. 214, 479–487.

    PubMed  CAS  Google Scholar 

  56. Haenen, G.R.M.M., Tai Tin Tsoi, J.N.L., Vermeulen, N.P.E., Timmermann, A., and Bast, A. (1987) Hydroxy-2,3-trans-nonenal Stimulates Microsomal Lipid Peroxidation by Reducing the Glutathione-Dependent Protection,Arch. Biochem. Biophys. 259, 449–459.

    Article  PubMed  CAS  Google Scholar 

  57. Workman, P., Walton, M.I., Powis, G., and Schlager, J.J. (1989) DT-Diaphorase: Questionable Role in Mitomycin C Resistance, But a Target for Novel Bioreductive drugs?Br. J. Cancer 60, 800–802.

    PubMed  CAS  Google Scholar 

  58. Marshall, R.S., Rauth, A.M., and Paterson, M. (1989) Reply to the Letter from Workmanet al., Br. J. Cancer 60, 803.

    Google Scholar 

  59. Ross, D., Siegel, D., Beall, H., Prakash, A.S., Mulcahy, R.T., and Gibson, N.W. (1993) DT-Diaphorase in Activation and Detoxification of Quinones. Bioreductive Activation of Mitomycin C,Cancer Metastasis Rev. 12, 83–101.

    Article  PubMed  CAS  Google Scholar 

  60. Pritsos, C.A., Keyes, S.R., and Sartorelli, A.C. (1989) Effect of the Superoxide Dismutase Inhibitor, Diethyldithiocarbamate, on the Cytotoxicity of Mitomycin Antibiotics,Cancer Biochem. Biophys. 10, 289–298.

    PubMed  CAS  Google Scholar 

  61. Takahashi, N., Schreiber, J., Fischer, V., and Mason, R.P. (1987) Fromation of Glutathione-Conjugated Semiquinones by the Reaction of Quinones with Glutathione: An ESR Study,Arch. Biochem. Biophys. 252, 41–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Shao, Y., Pardini, L. & Pardini, R.S. Dietary menhaden oil enhances mitomycin C antitumor activity toward human mammary carcinoma MX-1. Lipids 30, 1035–1045 (1995). https://doi.org/10.1007/BF02536289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536289

Keywords

Navigation