Skip to main content
Log in

In vivo pollen tube cell ofArabidopsis thaliana I. Tube cell cytoplasm and wall

  • Original Articles
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Pollen tubes are an excellent system for the study of polarized tip growth, cell movement, and cell-to-cell communication in plants. We report the first description at the transmission electron microscope level of cryofixed, in vivo grown pollen tubes. The tube cell ofArabidopsis thaliana growing in the style can be divided into four zones, similar to those reported for pollen tube cells of members of the family Solanaceae. Some distinct differences from data reported for other species include the morphology of the clear zone at the tip, the composition of the tip wall, and the apparent lack of arabinogalactan proteins in the pollen tube and surrounding transmitting tissue. The clear zone ofA. thaliana is packed with vesicles which do not form the inverted cone found in other species and that fuse in clusters with the plasmalemma in the tip region. Immunocytochemical analyses revealed that the pollen tube has a primary, pectic wall composed solely of highly esterified homogalacturonans at the tip. This wall becomes increasingly thicker basipetally and is composed of both highly esterified and lowly esterified homogalacturonans behind the clear zone. A secondary callosic wall appears behind the clear zone and becomes thicker basipetally. Using a variety of probes, we have been unable to identify any arabinogalactan proteins in the pollen tube cell or in the transmitting tissue of the style. Unlike our earlier reports of the extracellular matrices of the septum transmitting tissue of the ovary, the stylar matrices were found to be rich in both highly and lowly esterified homogalacturonans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AGPs:

arabinogalactan proteins

DAPI:

4′,6-diamidino-2-phenylindole

ECM:

extracellular matrix

FDA:

fluorescein diacetate

MAbs:

monoclonal antibodies

MGU:

male germ unit

References

  • Brownlee C, Wood JW (1986) A gradient of cytoplasmic free calcium in growing rhizoid cells ofFucus serratus. Nature 320: 624–626

    Article  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls of flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3: 1–30

    Article  PubMed  CAS  Google Scholar 

  • Cole K, Lin S-C (1969) Plasmalemmasomes in sporelings of the brown algaPetalonia debilis. Can J Bot 48: 265–268

    Google Scholar 

  • Cresti M, Pacini E, Ciampolini F, Sarfatti G (1977) Germination and early tube development in vitro ofLycopersicum peruvianum pollen: ultrastructural features. Planta 136: 239–247

    Article  Google Scholar 

  • —, Ciampolini F, Mulcahy DLM, Mulcahy G (1985) Ultrastructure ofNicotiana alata pollen, its germination and early tube formation. Am J Bot 72: 719–727

    Article  Google Scholar 

  • —, Lancelle SA, Hepler PK (1987) Structure of the generative cell wall complex after freeze substitution in pollen tubes ofNicotiana andImpatiens. J Cell Sci 88: 373–378

    Google Scholar 

  • Derksen J, Rutten T, Lichtscheidl IK, de Win AHN, Pierson ES, Rongen G (1995b) Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188: 267–276

    Article  Google Scholar 

  • — —, Van Amstel T, de Win A, Doris F, Steer M (1995a) Regulation of pollen tube growth. Acta Bot Neerl 44: 93–119

    Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1991) Routine cryofixation of plant tissue by propane jet freezing for freeze substitution. J Electron Microsc Tech 19: 107–117

    Article  PubMed  CAS  Google Scholar 

  • Doris FP, Steer MW (1996) Effects of fixatives and permeabilisation buffers on pollen tubes: implications for localisation of actin microfilaments using phalloidin staining. Protoplasma 195: 25–36

    Article  CAS  Google Scholar 

  • Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains ofNicotiana tabacum. Planta 206: 452–460

    Article  CAS  Google Scholar 

  • Fowler JE, Quatrano RS (1997) Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall. Annu Rev Cell Dev Biol 13: 696–743

    Article  Google Scholar 

  • Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11: 727–738

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509–514

    Article  PubMed  CAS  Google Scholar 

  • Heath IB (ed) (1990) Tip growth in plant and fungal cells. Academic Press, San Diego

    Google Scholar 

  • —, Greewood AD (1970) The structure and formation of lomasomes. J Gen Microbiol 62: 129–137

    Google Scholar 

  • Herth W, Reiss H-D, Hartmann E (1990) Role of calcium ions in tip growth of pollen tubes and moss protonema cells. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, San Diego, pp 91–118

    Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107: 1–78

    Google Scholar 

  • Huang C-N, Cornejo MJ, Bush DS, Jones RL (1986) Estimating viability of plant protoplasts using double and single staining. Protoplasma 135: 80–87

    Article  Google Scholar 

  • Iwanami Y (1956) Protoplasmic movement in pollen grains and pollen tubes. Phytomorphology 6: 288–295

    Google Scholar 

  • Jauh GY, Lord EM (1995) Movement of the pollen tube cell in the lily style in the absence of the pollen grain and the spent pollen tube. Sex Plant Reprod 8: 168–172

    Article  Google Scholar 

  • — — (1996) Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination. Planta 199: 251–261

    Article  CAS  Google Scholar 

  • Kandasamy MK, Kappler R, Kristen U (1988) Plasmatubules in the pollen tubes ofNicotiana sylvestris. Planta 173: 35–41

    Article  Google Scholar 

  • —, Parthasarathy MV, Nasrallah ME (1991) High pressure freezing and freeze substitution improve immunolabeling ofS-locus specific glycoproteins and the stigma papillae ofBrassica. Protoplasma 162: 187–191

    CAS  Google Scholar 

  • —, Nasrallah JB, Nasrallah ME (1994) Pollen-pistil interactions and developmental regulation of pollen tube growth inArabidopsis. Development 120: 3405–3418

    CAS  Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181: 512–521

    Article  CAS  Google Scholar 

  • — —, Peart J, Cooper C, Roberts K (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J 1: 317–326

    Google Scholar 

  • Kost B, Spielhofer P, Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16(3): 393–401

    Article  PubMed  CAS  Google Scholar 

  • —, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua N-H (1999) Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145: 317–330

    Article  PubMed  CAS  Google Scholar 

  • Kropf DL, Bisgrove SR, Hable WE (1998) Cytoskeletal control of polar growth in plant cells. Curr Opin Cell Biol 10: 117–122

    Article  PubMed  CAS  Google Scholar 

  • Kuang A, Musgrave ME (1996) Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation inArabidopsis thaliana. Protoplasma 194: 81–90

    Article  PubMed  CAS  Google Scholar 

  • Lancelle SA, Hepler PK (1989) Immunogold labelling of actin on sections of freeze-substituted plant cells. Protoplasma 150: 72–74

    Article  Google Scholar 

  • — — (1992) Ultrastructure of freeze-substituted pollen tubes ofLilium longiflorum. Protoplasma 167: 215–230

    Article  Google Scholar 

  • —, Cresti M, Hepler PK (1987) Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes ofNicotiana alata. Protoplasma 140: 141–150

    Article  Google Scholar 

  • — — — (1997) Growth inhibition and recovery inLilium longiflorum pollen tubes: structural effects of caffeine. Protoplasma 196: 21–33

    Article  CAS  Google Scholar 

  • Lennon KA, Roy S, Hepler PK, Lord EM (1998) The structure of the transmitting tissue ofArabidopsis thaliana (L.) and the path of pollen tube growth. Sex Plant Reprod 11: 49–59

    Article  Google Scholar 

  • — — — —, (1999) Pollination inArabidopsis thaliana: cell-cell interaction during pollen tube growth (Abstract). In: Nothnagel E, Clarke A, Bacic A (eds) Cell and developmental biology of arabinogalactan-proteins. Kluwer Academic/Plenum, New York (in press)

    Google Scholar 

  • Li H, Lin Y, Heath RM, Zhu MX, Yang Z (1999) Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11:1731–1742

    Article  PubMed  CAS  Google Scholar 

  • Li Y-Q, Linskens HF (1983) Wall-bound proteins of pollen tubes after self- and cross-pollination inLilium longiflorum. Theor Appl Genet 67:11–16

    Article  CAS  Google Scholar 

  • —, Chen F, Linskens HF, Cresti M (1994) Distribution of unesterified and esterified pectins in cell walls of pollen tubes of flowering plants. Sex Plant Reprod 7:145–152

    Google Scholar 

  • —, Faleri C, Geitmann A, Zhang H-Q, Cresti M (1995) Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes ofNicotiana tabacum L. Protoplasma 189: 26–36

    Article  CAS  Google Scholar 

  • - Moscatelli A, Cai G, Cresti M (1997) Functional interactions among cytoskeleton, membranes, and cell wall in the pollen tube of flowering plants. Int Rev Cytol: 133–199

  • Lucas WJ, Franceschi VR (1981) Characean charasome-complex and plasmalemma vesicle development. Protoplasma 107: 255–267

    Article  Google Scholar 

  • Madden K, Snyder M (1998) Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol 52: 687–744

    Article  PubMed  CAS  Google Scholar 

  • Malhò R (1998) Expanding tip growth theory. Trends Plant Sci 3: 40–42

    Google Scholar 

  • —, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–1949

    Article  Google Scholar 

  • Mascarenhas JP, Lafountain J (1972) Protoplasmic streaming, cytochalasin B, and growth of the pollen tube. Tissue Cell 4:11–14

    PubMed  CAS  Google Scholar 

  • McCully ME, Canny MJ (1985) The stabilization of labile configurations of plant cytoplasm by freeze-substitution. J Microsc 139: 27–33

    Google Scholar 

  • Menzel D (1996) The role of the cytoskeleton in polarity and morphogenesis of algal cells. Curr Opin Cell Biol 8: 38–42

    Article  PubMed  CAS  Google Scholar 

  • Miller DD, Lancelle SA, Hepler PK (1996) Actin microfilaments do not form a dense meshwork inLilium longiflorum pollen tube tips. Protoplasma 195:123–132

    Article  Google Scholar 

  • —, de Ruijter NCA, Emons AMC (1997) From signal to form: aspects of the cytoskeleton-plasma membrane-cell wall continuum in root hair tips. J Exp Bot 48:1881–1896

    Article  CAS  Google Scholar 

  • — — Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–154

    Article  CAS  Google Scholar 

  • Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Plant Cytol 174:195–291

    Article  CAS  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi, Melbourne

    Google Scholar 

  • Pierson ES, Lichtscheidl IK, Derksen J (1990) Structure and behaviour of organelles in living pollen tubes ofLilium longiflorum. J Exp Bot 41:1461–1468

    Google Scholar 

  • —, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6: 1815–1828

    Article  PubMed  CAS  Google Scholar 

  • Platt KA, Oliver MJ, Thomson WW (1997) Importance of the fixative for reliable ultrastructural preservation of poikilohydric plant tissues: observations on dry, partially, and fully hydrated tissues ofSaliginella lepidophylla. Ann Bot 80: 599–610

    Article  Google Scholar 

  • Rathore KS, Cork RJ, Robinson KR (1991) A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol 148:612–619

    Article  PubMed  CAS  Google Scholar 

  • Rosen WG (1971) Pollen tube growth and fine structure. In: Heslop-Harrison J (ed) Pollen: development and physiology. Butterworths, London, pp 177–185

    Google Scholar 

  • Roy S, Eckard KJ, Lancelle SA, Hepler PK, Lord EM (1997) High-pressure freezing improves the ultrastructural preservation of in vivo grown lily pollen tubes. Protoplasma 200: 87–98

    Article  Google Scholar 

  • —, Holdaway-Clarke TL, Hackett GR, Kunkel JG, Lord EM, Hepler PK (1999) Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. Plant J 19: 379–386

    Article  PubMed  CAS  Google Scholar 

  • Ryan E, Grierson CS, Cavell A, Steer M, Dolan L (1998) TIP1 is required for both tip growth and non-tip growth inArabidopsis. New Phytol 138: 49–58

    Article  Google Scholar 

  • Sanders LC, Eckard KJ, Lord EM (1990) Divergent pollination systems in the cleistogamous species,Collomia grandiflora (Polemoniaceae). Protoplasma 159: 26–34

    Article  Google Scholar 

  • Schnepf E (1986) Cellular polarity. Annu Rev Plant Physiol 37: 23–47

    Article  CAS  Google Scholar 

  • Shaw SL, Quatrano RS (1996) The role of targeted secretion in the establishment of cell polarity and the orientation of the division plane inFucus zygotes. Development 122:2623–2630

    PubMed  CAS  Google Scholar 

  • Shivanna KR, Sawhney VK (1995) Polyethylene glycol improves the in vitro growth ofBrassica pollen tubes without loss of germination. J Exp Bot 46:1771–1774

    CAS  Google Scholar 

  • Sievers A, Schnepf E(1981) Morphogenesis and polarity in tubular cells with tip growth. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 265–299 (Cell biology monographs, vol 8)

    Google Scholar 

  • Southworth D, Kwiatkowski S (1996) Arabinogalactan proteins at the cell surface ofBrassica sperm andLilium sperm and generative cells. Sex Plant Repro 9: 269–272

    CAS  Google Scholar 

  • Steer MW (1990) Role of actin in tip growth. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, San Diego, pp 119–145

    Google Scholar 

  • —, Steer JW (1989) Tansley review no. 16: Pollen tube tip growth. New Phytol 111: 323–358

    Article  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48: 461–491

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SC, Polito VS (1988) Organization of the cytoskeleton in pollen tubes ofPyrus communis: a study employing conventional and freeze-substituted electron microscopy, immunofluorescence, and rhodamine-phalloidin. Protoplasma 147: 100–112

    Article  Google Scholar 

  • Van Aelst AC, Van Went JL (1992) Ultrastructural immunolocalization of pectins and glycoproteins inArabidopsis thaliana pollen grains. Protoplasma 168:14–19

    Article  Google Scholar 

  • VandenBosch KA, Bradley DJ, Knox JP, Perotto S, Butcher GW, Brewin NJ (1989) Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO J 8:335–342

    PubMed  CAS  Google Scholar 

  • Vasil IK (1987) Physiology and culture of pollen. Int Rev Cytol 107: 127–174

    Article  Google Scholar 

  • Wymer CL, Bibikova TN, Gilroy S (1997) Cytoplasmic free calcium distribution during the development of root hairs ofArabidopsis. Plant J 12: 427–139

    Article  PubMed  CAS  Google Scholar 

  • Yariv J, Rapport MM, Graf L (1962) The interaction of glycosides and saccharides with antibody to the corresponding phenylazoglycosides. Biochem J 85: 383–388

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lennon, K.A., Lord, E.M. In vivo pollen tube cell ofArabidopsis thaliana I. Tube cell cytoplasm and wall. Protoplasma 214, 45–56 (2000). https://doi.org/10.1007/BF02524261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524261

Keywords

Navigation