Skip to main content
Log in

Biometrics, biomathematics and the morphometric synthesis

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

At the core of contemporarymorphometrics—the quantitative study of biological shape variation—is a synthesis of two originally divergent methodological styles. One contributory tradition is the multivariate analysis of covariance matrices originally developed as biometrics and now dominant across a broad expanse of applied statistics. This approach, couched solely in the linear geometry of covariance structures, ignores biomathematical aspects of the original measurements. The other tributary emphasizes the direct visualization of changes in biological form. However, making objective the biological meaning of the features seen in those diagrams was always problematical; also, the representation of variation, as distinct from pairwise difference, proved infeasible.

To combine these two variants of biomathematical modeling into a valid praxis for quantitative studies of biological shape was a goal earnestly sought though most of this century. That goal was finally achieved in the 1980s when techniques from mathematical statistics, multivariate biometrics, non-Euclidean geometry and computer graphics were combined in a coherent new system of tools for the complete regionalized quantitative analysis oflandmark points together with the biomedical images in which they are seen.

In this morphometric synthesis, correspondence of landmarks (biologically labeled geometric points, like “bridge of the nose”) across specimens is taken as a biomathematical primitive. The shapes of configurations of landmarks are defined as equivalence classes with respect to the Euclidean similarity group and then represented as single points in David Kendall'sshape space, a Riemannian manifold with Procrustes distance as metric. All conventional multivariate strategies carry over to the study of shape variation and covariation when shapes are interpreted in the tangent space to the shape manifold at an average shape. For biomathematical interpretation of such analyses, one needs a basis for the tangent space compatible with the reality of local biotheoretical processes and explanations at many different geometric scales, and one needs graphics for visualizing average shape differences and other statistical contrasts there. Both of these needs are managed by thethin-plate spline, a deformation function that has an unusually helpful linear algebra. The spline also links the biometrics of landmarks to deformation analysis of the images from which the landmarks originally arose.

This article reviews the history and principal tools of this synthesis in their biomathematical and biometrical context and demonstrates their usefulness in a study of focal neuroanatomical anomalies in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  • Andreasen, N., S. Arndt, V. Swayze, T. Cizadlo, M. Flaum, D. O'Leary, J. Ehrhardt and W. Yuh. 1994. Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging.Science 266, 294–298.

    Google Scholar 

  • Blackith, R. and R. Reyment. 1971.Multivariate Morphometrics. New York: Academic Press.

    MATH  Google Scholar 

  • Bookstein, F. L. 1978.The Measurement of Biological Shape and Shape Change.Lecture Notes in Biomathematics, Vol. 24. New York: Springer.

    MATH  Google Scholar 

  • Bookstein, F. L. 1982a. On the cephalometrics of skeletal change.Amer. J. Orthodontics 82, 177–198.

    Article  Google Scholar 

  • Bookstein, F. L. 1982b. Foundations of morphometrics.Ann. Rev. Ecology and Systematics 13, 451–470.

    Article  Google Scholar 

  • Bookstein, F. L. 1984a. A statistical method for biological shape comparisons.J. Theor. Biol. 107, 475–520.

    Article  Google Scholar 

  • Bookstein, F. L. 1984b. Tensor biometrics for changes in cranial shape.Ann. Human Biol. 11, 413–437.

    Article  Google Scholar 

  • Bookstein, F. L. 1986. Size and shape spaces for landmark data in two dimensions.Statis. Sci. 1, 181–242.

    MATH  Google Scholar 

  • Bookstein, F. L. 1989a. Principal warps: thin-plate splines and the decomposition of deformations.IEEE Trans. Pattern Anal. Machine Intelligence 11, 567–585.

    Article  MATH  Google Scholar 

  • Bookstein, F. L. 1989b. “Size and shape”: a comment on semantics.Systematic Zoology 38, 173–180.

    Article  Google Scholar 

  • Bookstein, F. L. 1991.Morphometric Tools for Landmark Data. New York: Cambridge University Press.

    MATH  Google Scholar 

  • Bookstein, F. L. 1994. Landmarks, edges, morphometrics, and the brain atlas problem. InFunctional Neuroimaging: Technical Foundations, R. Thatcher, M. Hallett, T. Zeffiro, E. John and M. Huerta (Eds), pp. 107–119. New York: Academic Press.

    Google Scholar 

  • Bookstein, F. L. 1995a. A standard formula for the uniform shape component in landmark data. InAdvances in Morphometrics: Proceedings of the 1993 NATO ASI on Morphometrics, L. F. Marcus et al. (Eds). New York: Plenum. To appear.

    Google Scholar 

  • Bookstein, F. L. 1995b. Combining the tools of geometric morphometrics. InAdvances in Morphometrics: Proceedings of the 1993 NATO ASI on Morphometrics, L. F. Marcus et al. (Eds). New York: Plenum. To appear.

    Google Scholar 

  • Bookstein, F. L. 1995c. Combining “vertical” and “horizontal” features from medical images.Computer Vision, Virtual Reality, and Robotics in Medicine.Lecture Notes in Computer Science, N. Ayache (Ed), Vol. 905, pp. 184–191. Berlin: Springer.

    Google Scholar 

  • Bookstein, F. L. 1995d. How to produce a landmark point: the statistical geometry of incompletely registered images. InVision Geometry IV. S. P. I. E. Proceedings, (R. A. Melter et al. (Eds), Vol. 2573. Bellingham, WA: SPIE, pp. 266–277.

    Google Scholar 

  • Bookstein, F. L. 1995e. Utopian skeletons in the biometric closet. Occasional Papers of the Institute for the Humanities, number 2, Institute for the Humanities, University of Michigan.

  • Bookstein, F. L., B. Chernoff, R. Elder, J. Humphries, G. Smith and R. Strauss. 1985.Morphometrics in Evolutionary Biology. Philadelphia: Academy of Natural Sciences of Philadelphia.

    Google Scholar 

  • Bookstein, F. L. and W. D. K. Green. 1993. A feature space for edgels in images with landmarks.J. Math. Imaging and Vision 3, 231–261.

    Article  MATH  Google Scholar 

  • Bookstein, F. L. and W. D. K. Green. 1994a. Edgewarp: A flexible program package for biometric image warping in two dimensions. InVisualization in Biomedical Computing 1994.SPIE Proceedings. R. Robb (Ed), Vol. 2359. Bellingham, WA: SPIE, pp. 135–147.

    Google Scholar 

  • Bookstein, F. L. and W. D. K. Green. 1994b. Edgewarp: A program for biometric warping of medical images. Videotape, 26 minutes.

  • Boyd, E. 1980.Origins of the Study of Human Growth. University of Oregon Health Sciences Center. Portland, OR.

    Google Scholar 

  • Burnaby, T. P. 1966. Growth-invariant discriminant functions and generalized distances.Biometrics 22, 96–110.

    Article  MATH  MathSciNet  Google Scholar 

  • DeQuardo, J. R., F. L. Bookstein, W. D. K. Green, J. Brumberg and R. Tandon. 1995. Spatial relationships of neuroanatomic landmarks in schizophrenia.Psychiatry Research: Neuroimaging.

  • Duchon, J. 1976. Interpolation des fonctions de deux variables suivant la principe de la flexion des plaques minces.RAIRO Anal. Numé. 10, 5–12.

    MathSciNet  Google Scholar 

  • Duncan, O. D. 1984.Notes on Social Measurement: Historical and Critical. New York: Russell Sage Foundation.

    Google Scholar 

  • Dürer, A. 1528.Vier Bücher von Menschlicher Proportion. Dietikon-Zürich: Josef Stocker, 1969.

    Google Scholar 

  • Friston, K. J. 1994. Statistical parametric mapping. InFunctional Neuroimating: Technical Foundations R. Thatcher, M. Hallett, T. Zeffiro, E. John and M. Heurta (Eds), pp. 79–93. New York: Academic Press.

    Google Scholar 

  • Goodall, C. R. 1983. The statistical analysis of growth in two dimensions. Doctoral dissertation, Department of Statistics, Harvard University.

  • Goodall, C. R. 1991. Procrustes methods in the statistical analysis of shape.J. Roy. Statist. Soc. Ser. B 53, 285–339.

    MATH  MathSciNet  Google Scholar 

  • Goodall, C. R. and K. V. Mardia. 1991. A geometric derivation of the shape density.Adv. in Appl. Probab. 23, 496–514.

    Article  MATH  MathSciNet  Google Scholar 

  • Gower, J. C. 1971. A general coefficient of similarity and some of its properties.Biometrics 27, 857–874.

    Article  Google Scholar 

  • Grenander, U. and M. Miller. 1994. Representations of knowledge in complex systems.J. Roy. Statist. Soc. Ser. B 56, 549–603.

    MATH  MathSciNet  Google Scholar 

  • Hopkins, J. W. 1966. Some considerations in multivariate allometry.Biometrics 22, 747–760.

    Article  Google Scholar 

  • Hotelling, H. 1936. Relations between two sets of variables.Biometrika 28, 321–377.

    Article  MATH  Google Scholar 

  • Huxley, J. 1932.Principles of Relative Growth. London: Methuen.

    Google Scholar 

  • Jolicoeur, P. 1963. The multivariate generalization of the allometry equation.Biometrics 19, 497–499.

    Article  Google Scholar 

  • Kendall, D. G. 1984. Shape-manifolds, Procrustean metrics, and complex projective spaces.Bull. London Math. Soc. 16, 81–121.

    MATH  MathSciNet  Google Scholar 

  • Kent, J. T. 1994. The complex Bingham distribution and shape analysis.J. Roy. Statist. Soc. Ser. B 56, 285–299.

    MATH  MathSciNet  Google Scholar 

  • Kent, J. T. and K. V. Mardia. 1994. The link between kriging and thin-plate splines. InProbability, Statistics, and Optimisation, F. P. Kelly (Ed), pp. 325–339. New York: Wiley.

    Google Scholar 

  • Koenderink, J. 1990.Solid Shape. Cambridge, MA: M.I.T. Press.

    Google Scholar 

  • Kuhn, T. S. 1959. The function of measurement in modern physical science. InQuantification, H. Woolf (Ed), pp. 31–63. Indianapolis: Bobbs-Merrill.

    Google Scholar 

  • Latour, B. 1987.Science in Action. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lewis, J. L. W. Lew and J. Zimmerman. 1980. A nonhomogeneous anthropometric scaling method based on finite element principles.J. Biomechanics 13, 815–824.

    Article  Google Scholar 

  • Lohmann, G. P. 1983. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape.Math. Geology 15, 659–672.

    Article  Google Scholar 

  • Marcus, L. F., E. Bello and A. García-Valdecasas (Eds). 1993.Contributions to Morphometrics. Madrid: Monografias, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Cientificas.

    Google Scholar 

  • Marcus, L. F., M. Corti, A. Loy, G. Naylor and D. Slice (Eds). 1995.Advances in Morphometrics: Proceedings of the 1993 NATO ASI on Morphometrics. New York: Plenum. To appear.

    Google Scholar 

  • Mardia, K. V. 1995. Shape advances and future perspectives. InProceedings in Current Issues in Statistical Shape Analysis, K. V. Mardia and C. A. Gill (Eds), pp. 57–75. Leeds, U.K.: Leads University Press.

    Google Scholar 

  • Mardia, K. V. and I. Dryden. 1989. The statistical analysis of shape data.Biometrika 76, 271–281.

    Article  MATH  MathSciNet  Google Scholar 

  • Mardia, K. V. and C. A. Gill (Eds). 1995.Proceedings in Current Issues in Statistical Shape Analysis. Leeds, U.K.: Leeds University Press.

    Google Scholar 

  • Meinguet, J. 1979. Multivariate interpolation at arbitrary points made simple.Z. Angewandte Math. Phys. 30, 292–304.

    Article  MATH  MathSciNet  Google Scholar 

  • Mosimann, J. E. 1970. Size allometry: size and shape variables with characterizations of the log-normal and generalized gamma distributions.J. Amer. Statist. Assoc. 65, 930–945.

    Article  MATH  Google Scholar 

  • Netter, F. H. 1989.Atlas of Human Anatomy. Summit, NJ: Ciba-Geigy Corporation.

    Google Scholar 

  • Oxnard, C. E. 1973.Form and Pattern in Human Evolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Oxnard, C. E. 1978. On biologist's view of morphometrics.Ann. Rev. Ecology and Systematics 9, 219–241.

    Article  Google Scholar 

  • Pearson, K. 1914–1930.The Life, Letters and Labours of Francis Galton (Three volumes bound as four). Cambridge, U.K.: University Press.

    Google Scholar 

  • Porteous, I. R. 1994.Geometric Differentiation for the Intelligence of Curves and Surfaces. Cambridge, U.K.: Cambridge University Press.

    MATH  Google Scholar 

  • Reyment, R. A. 1991.Multivariate Palaeobiology. Oxford: Pergamon.

    Google Scholar 

  • Richards, O. W. and A. C. Kavanagh. 1943. The analysis of relative growth-gradients and changing form of growing organisms: illustrated by the tobacco leaf.American Naturalist 77, 385–399.

    Article  Google Scholar 

  • Rohlf, F. J. 1993. Relative warp analysis and an example of its application to mosquito wings. InContributions to Morphometrics, L. F. Marcus et al. (Eds), pp. 131–159. Madrid: Monografias, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Cientificas.

    Google Scholar 

  • Rohlf, F. J. and F. J. Bookstein (Eds). 1990.Proceedings of the Michigan Morphometrics Workshop. Ann Arbor, MI: University of Michigan Museums.

    Google Scholar 

  • Rohlf, F. J. and D. Slice, 1990. Extensions of the Procrustes method for the optimal superposition of landmarks.Systematic Zoology 39, 40–59.

    Article  Google Scholar 

  • Sibson, B. 1978. Studies in the robustness of multidimensional scaling: Procrustes statistics.J. Roy. Statist. Soc. Ser. B. 40, 234–238.

    MATH  Google Scholar 

  • Sneath, P. H. A. 1967. Trend-surface analysis of transformation grids.J. Zoology 151, 65–122.

    Article  Google Scholar 

  • Sneath, P. H. A. and R. R. Sokal, 1963.Principles of Numerical Taxonomy. San Francisco: W. H. Freeman.

    Google Scholar 

  • Stigler, S. M. 1986.The History of Statistics: The Measurement of Uncertainty Before 1900. Cambridge, MA: Harvard University Press.

    MATH  Google Scholar 

  • Thompson, D'A. W. 1917.On Growth and Form. London: Macmillan.

    Google Scholar 

  • Timoshenko, S. and S. Woinowsky-Krieger. 1959.Theory of Plates and Shells, 2nd ed. New York: McGraw-Hill.

    Google Scholar 

  • Wahba, G. 1990.Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.

    MATH  Google Scholar 

  • Wright, S. 1968.Evolution and the Genetics of Populations. Vol. 1: Genetic and Biometric Foundations. Chicago: University of Chicago Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bookstein, F.L. Biometrics, biomathematics and the morphometric synthesis. Bltn Mathcal Biology 58, 313–365 (1996). https://doi.org/10.1007/BF02458311

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458311

Keywords

Navigation