Skip to main content
Log in

Preparation and ultrafast optical characterization of metal and semiconductor colloidal nano-particles

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The ultrafast dynamics of photoinduced electrons in several metal and semiconductor colloidal nanoparticle systems are characterized using femtosecond laser spectroscopy. Various preparation methods are used and, in several cases, modified for making particles with long-term stability and narrow and controllable size distributions. The particle size and size distribution are determined using transmission electron microscopy and electronic absorption spectroscopy. For aqueous gold and silver colloids, spatial size confinement is found to cause substantially slower electronic relaxation due to reduction of non-equilibrium electron transport and weaker electron-phonon coupling. In gold colloids, photoejection of electrons into the liquid is observed, which is attributed to a two-photon enhanced ionization process. The effect of surfactant on the electron dynamics in CdS colloids is examined and found to be significant, substantiating the notion that electrons are dominantly trapped at the liquid-solid interface. In Ru3+-doped TiO2 colloids, the electronic decay is found to be as fast as or even faster than in undoped TiO2 and other semiconductor colloids such as CdS, suggesting that ion doping of large bandgap semiconductor colloids is not necessarily effective in lengthening the electron lifetime. In almost all cases studied, the majority of the photoinduced electrons are found to decay within a few tens of picoseconds due to non-radiative relaxation. The results are discussed in the context of the potential applications of metal and semiconductor nano-particles in areas including photocatalysis and photoelectrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Henglein, J. Phys. Chem.97, 5457–5469 (1993).

    Article  CAS  Google Scholar 

  2. W.P. Halperin, Rev. Mod. Phys.58, 533 (1986).

    Article  CAS  Google Scholar 

  3. P.V. Kamat, Prog. React. Kinet.19, 277 (1994).

    CAS  Google Scholar 

  4. M.L. Steigerwald and L.E. Brus, Acc. Chem. Rec.23, 183 (1990).

    Article  CAS  Google Scholar 

  5. M. Gratzel,Heterogeneous Photochemical Electron Transfer (CRC Press, Boca Raton, 1989), p. 87.

    Google Scholar 

  6. M.A. Fox and M.T. Dulay, Chem. Rev.93, 341 (1993).

    Article  CAS  Google Scholar 

  7. N. Serpone and E. Pelizzetti (eds.),photocatalysis, Fundamentals and Applications (Wiley, New York, 1989).

    Google Scholar 

  8. K. Kalyanasundaram,Photochemistry in Microheterogeneous Systems (Academic Press, New York, 1987).

    Google Scholar 

  9. J.M. Lanzafame, S. Palese, D. Wang, R.J.D. Miller, and A.A. Muenter, J. Phys. Chem.98, 11020 (1994).

    Article  CAS  Google Scholar 

  10. G.L. Richmond, J.M. Robinson, and V.L. Shannon, Prog. Surf. Sci.28, 1 (1988).

    Article  CAS  Google Scholar 

  11. R. Guidelli (ed.),Electrified Interfaces in Physics, Chemistry and Biology (Kluwer Academic Publishers, Boston, 1992).

    Google Scholar 

  12. R.M. Corn and D.A. Higgins, Chem. Rev.94, 107 (1994).

    Article  CAS  Google Scholar 

  13. T. Linnert, P. Mulvaney, A. Henglein, and H. Weller, J. Am. Chem. Soc.112, 4657 (1990).

    Article  CAS  Google Scholar 

  14. Y. Rosenwaks, B.R. Thacker, A.J. Nozik, Y. Shapira, and D. Huppert, J. Phys. Chem.97, 10421 (1993).

    Article  CAS  Google Scholar 

  15. L.M. Peter, Chem Rev.90, 753 (1990).

    Article  CAS  Google Scholar 

  16. C.A. Koval and J.N. Howard, Chem. Rev.92, 411 (1992).

    Article  CAS  Google Scholar 

  17. T.W. Roberti, B.A. Smith, and J.Z. Zhang, J. Chem. Phys.102, 3860 (1995).

    Article  CAS  Google Scholar 

  18. J.Z. Zhang, R.H. O'Neil, and T.W. Roberti, J. Phys. Chem.98, 3859 (1994).

    Article  CAS  Google Scholar 

  19. D.P. Columb, Jr., K.A. Roussel, J. Saeh, D.E. Skinner, J.J. Caveleri, and R.M. Bowman, Chem. Phys. Lett.232, 210 (1995).

    Google Scholar 

  20. W. Choi, A. Termin, and M.R. Hoffman, J. Phys. Chem.98, 13669 (1994).

    Article  Google Scholar 

  21. G. Rothenberger, J. Moser, M. Gratzel, N. Serpone, and D.K. Sharma, J. Am. Chem. Soc.107, 8054 (1985).

    Article  CAS  Google Scholar 

  22. N.P. Ernsting, M. Kaschke, H. Weller, and L. Katsikas, J. Opt. Soc. Am. B7, 1630 (1990).

    Article  CAS  Google Scholar 

  23. A.E. Faulhaber, B.A. Smith, J.K. Andersen, and J.Z. Zhang,Mole. Cryst. Liquid Cryst. (1995), (in press); (b)J.Z. Zhang, B.A. Smith, A.E. Faulhaber, J.K. Andersen, and T.J. Rosales,Ultrafast Processes in Spectroscopy IX (1995), (in press).

  24. J.E. Evans, K.W. Springer, and J.Z. Zhang, J. Chem. Phys.107, 7 (1994).

    Google Scholar 

  25. M. Kaschke, N.P. Ernsting, U. Muller, and H. Weller, Chem. Phys. Lett.168, 543 (1990).

    Article  CAS  Google Scholar 

  26. J.M. Lantz and R.M. Corn, J. Phys. Chem.98, 9387 (1994).

    Article  CAS  Google Scholar 

  27. N.S. Lewis, Annu. Rev. Phys. Chem.42, 543 (1991).

    Article  CAS  Google Scholar 

  28. A. Kay and M. Gratzel, J. Phys. Chem.97, 6272 (1993).

    Article  CAS  Google Scholar 

  29. A. Kay, R. Humphry-Baker, and M. Gratzel, J. Phys. Chem.98, 952 (1994).

    Article  CAS  Google Scholar 

  30. K.R. Gopidas, M. Bohorquez, and P.V. Kamat, J. Phys. Chem.94, 6435 (1990).

    Article  CAS  Google Scholar 

  31. R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem.98, 3183 (1994).

    Article  CAS  Google Scholar 

  32. N. Serpone, E. Borgarello, and M. Gratzel, J. Chem. Soc. Chem. Commum. 342 (1983).

  33. L. Spanhel, H. Weller, and A. Henglein, J. Am. Chem. Soc.109, 6632 (1987).

    Article  CAS  Google Scholar 

  34. C. Kormann, D.W. Bahnemann, and M.R. Hoffmann, J. Phys. Chem.92, 5196 (1988).

    Article  CAS  Google Scholar 

  35. G. Frens, Nature: Physical Science241, 20 (1973).

    CAS  Google Scholar 

  36. J.S. Suh, D.P. DiLella, and M. Moskovits, J. Phys. Chem87, 1540 (1983).

    Article  CAS  Google Scholar 

  37. V.S. Gurin and M.V. Artemyev, J. Crystal Growth138, 993 (1994).

    Article  CAS  Google Scholar 

  38. S. Gallardo, M. Gutierrez, A. Henglein, and E. Janata, Ber. Bunsenges. Phys. Chem.93, 1080 (1989).

    CAS  Google Scholar 

  39. M.T. Nenadovic, M.I. Comor, V. Vasic, and O.I. Micic, J. Phys. Chem.94, 6390 (1990).

    Article  CAS  Google Scholar 

  40. V.L. Colvin, A.N. Goldstein, and P.A. Alivisatos, J. Am. Chem. Soc.114, 5221 (1992).

    Article  CAS  Google Scholar 

  41. Y. Wang, J. Phys. Chem.95, 1119 (1991).

    Article  CAS  Google Scholar 

  42. L.E. Brus, J. Chem. Phys.79, 5566 (1983).

    Article  CAS  Google Scholar 

  43. L.E. Brus, J. Chem. Phys.80, 4403 (1984).

    Article  CAS  Google Scholar 

  44. P.E. Lippens and M. Lannoo, Phys. Rev. B39, 10935 (1989).

    Article  CAS  Google Scholar 

  45. R.W. Schoenlein, D.M. Mittleman, J.J. Shiang, A.P. Alivisatos, and C.V. Shank, Phys. Rev. Lett.70, 1014 (1993).

    Article  CAS  Google Scholar 

  46. N.E. Christensen and B.O. Seraphin, Solid State Communication8, 1224 (1970).

    Google Scholar 

  47. D.R. Huffman,Optical Effects Associated With Small Particles, edited by P.W. Barber and R.K. Chang (World Scientific, Singapore, 1988), Chap. 5.

    Google Scholar 

  48. R.H. Doremus, J. Chem. Phys.40, 2391 (1964).

    Article  Google Scholar 

  49. M. Quinten and U. Kreibig, Appl. Opt.32, 6173 (1993).

    Article  CAS  Google Scholar 

  50. G. Berkovic and S. Efrima, Langmuir9, 355 (1992).

    Article  Google Scholar 

  51. F. Hache, D. Ricard, and C. Flytzanis, J. Opt. Soc. Am.B3, 1647 (1986).

    Google Scholar 

  52. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A.J. Ikushima, T. Tokizaki, and A. Nakamura, J. Opt. Soc. Am.B11, 1236 (1994).

    Google Scholar 

  53. Y. Wang and N. Herron, Phys. Rev. B42, 7253 (1990).

    Article  CAS  Google Scholar 

  54. P.E. Lippens and M. Lannoo, Phys. Rev. B39, 10935 (1989).

    Article  CAS  Google Scholar 

  55. Y. Wang and N. Herrott, J. Phys. Chem.95, 525 (1991).

    Article  CAS  Google Scholar 

  56. W. Choi, A. Termin, and M.R. Hoffmann, J. Phys. Chem.98, 13673 (1994).

    Google Scholar 

  57. P. Triggs, Helv. Phys. Acta.58, 657 (1985).

    CAS  Google Scholar 

  58. R. Meming, Electrochim. Acta.25, 77 (1980).

    Article  Google Scholar 

  59. D. Steinmuller-Nethl, R.A. Hopfel, E. Gornik, A. Leitner, and F.A. Ausenegg, Phys. Rev. Lett.68, 389 (1992).

    Article  Google Scholar 

  60. C.K. Sun, F. Vallee, L. Acioli, E.P. Ippen, and J.G. Fujimoto, Phys. Rev. B48, 12365 (1993).

    Article  CAS  Google Scholar 

  61. S.D. Brorson, J.G. Fujimoto, and E.P. Ippen, Phys. Rev. Lett.59, 1962 (1987).

    Article  CAS  Google Scholar 

  62. W.S. Fann, R. Storz, H.W.K. Tom, and J. Bokor, Phys. Rev. B46, 13592 (1992).

    Article  CAS  Google Scholar 

  63. R.H.M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. Lett.64, 784 (1990).

    Article  CAS  Google Scholar 

  64. E.D. Belotskii and P.M. Tomchuk, Int. J. Electronics73, 955 (1992).

    Google Scholar 

  65. E.D. Belotskii and P.M. Tomchuk, Int. J. Electronics69, 173 (1990).

    Google Scholar 

  66. F. Hache, D. Ricard, and C. Girard, Phys. Rev. B38, 7990 (1988).

    Article  Google Scholar 

  67. R.C. Weast (ed.),CRC Handbook of Chemistry and Physics, (CRC Press, Boca Raton, Florida, 1984), p. E-76.

    Google Scholar 

  68. J.P. Girardeau-Montaut, C. Girardeau-Montaut, S.D. Moustaizis, and C. Rotakis, Appl. Phys. Lett.64, 3664 (1994).

    Article  CAS  Google Scholar 

  69. P.V. Kamat, T.W. Ebbesen, N.M. Dimitrijevic, and A.J. Nozik, Chem. Phys. Lett.157, 384 (1989).

    Article  CAS  Google Scholar 

  70. M.G. Bawendi, W.L. Wilson, L. Rothberg, P.J. Carroll, T.M. Jedju, M.L. Steigerwald, and L.E. Brus, Phys. Rev. Lett.65, 1623 (1990).

    Article  CAS  Google Scholar 

  71. M. Gratzel and A.J. Frank, J. Phys. Chem.86, 2964 (1982).

    Article  Google Scholar 

  72. M. Haase, H. Weller, and A. Henglein, J. Phys. Chem.92, 4706 (1988).

    Article  CAS  Google Scholar 

  73. Z. Alfassi, D. Bahnemann, and A. Henglein, J. Phys. Chem.86, 4656 (1982).

    Article  CAS  Google Scholar 

  74. S. Baral, A. Fojtik, H. Weller, and A. Henglein, J. Am. Chem. Soc.108, 375 (1986).

    Article  CAS  Google Scholar 

  75. A. Henglein, A. Kumar, E. Janata, and H. Weller, Chem. Phys. Lett.132, 133 (1986).

    Article  CAS  Google Scholar 

  76. R.F. Howe and M. Gratzel, J. Phys. Chem.89, 4495 (1985).

    Article  CAS  Google Scholar 

  77. Y.Z. Hu, M. Lindberg, S.W. Koch, and N. Peyghambarian, SPIE1261, 88 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, B.A., Waters, D.M., Faulhaber, A.E. et al. Preparation and ultrafast optical characterization of metal and semiconductor colloidal nano-particles. J Sol-Gel Sci Technol 9, 125–137 (1997). https://doi.org/10.1007/BF02439393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02439393

Keywords

Navigation