Skip to main content
Log in

Analysis of age-associated mitochondrial DNA deletion breakpoint regions from mice suggests a novel model of deletion formation

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Mitochondrial genomes with multiple types of DNA deletions have been shown to accumulate with age in various tissues from humans, monkeys, rats, mice, and C. elegans. The deleted genomes have been classified based on characteristics of the deletion breakpoints such as the presence (or absence) of direct repeat sequences. The prevalence of direct repeats located precisely at deletion breakpoints in human mitochondrial DNA deleted genomes has led several investigators to propose slip replication or recombination as mechanisms of deletion formation. Other sequence motifs such as topoisomerase II cleavage recognition sites and secondary or tertiary structures have also been implicated in aiding deletion formation. We have characterized, from mouse skeletal muscle and brain tissues, the breakpoint regions from 36 mitochondrial genomes with deletions. Based on the large number of deletion breakpoints precisely flanked by small (2–4 nucleotides) direct repeats, we propose “replication jumping” as an important mechanism of deletion formation. In this model, the polymerase stutters during replication, possibly in an area that has been oxidatively modified. The nascent strand then anneals to a complementary downstream region and replication continues after the removal of any single-stranded “excess” DNA up to a double-stranded region, resulting in a mutant genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal S and Sohal RS: DNA oxidative damage and life expectancy in houseflies. Proc. Natl. Acad. Sci. USA 91(25):12332–12335, 1994.

    Google Scholar 

  2. Attardi G: The elucidation of the human mitochondrial genome: a historical perspective. Bioessays 5(1): 34–39, 1986.

    Article  PubMed  CAS  Google Scholar 

  3. Bandy B and Davison AJ: Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging. Free Radical Biol. Med. 8(6):523–539, 1990.

    Article  CAS  Google Scholar 

  4. Baumer A, Zhang C, Linnane AW and Nagley, P: Age-related human mtDNA deletions: A heterogeneous set of deletions arising at a single pair of directly repeated sequences. Am. J. Hum. Genet. 54(4):618–630, 1994.

    PubMed  CAS  Google Scholar 

  5. Bibb MJ, Van Etten RA, Wright CT, Walberg MW and Clayton DA: Sequence and gene organization of mouse mitochondrial DNA. Cell 26(2 Pt2):167–180, 1981.

    Article  PubMed  CAS  Google Scholar 

  6. Blok RB, Thorburn DR, Thompson GN and Dahl HHM: A topoisomerase II cleavage site is associated with a novel mitochondrial DNA deletion. Hum. Genet. 95(1):75–81, 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Bogenhagen D and Clayton DA: Mechanism of mitochondrial DNA replication in mouse L-cells: Introduction of superhelical turns into newly replicated molecules. J. Mol. Biol. 119(1):69–81, 1978.

    Article  PubMed  CAS  Google Scholar 

  8. Brossas JY, Barreau E, Courtois Y and Tréton J: Muttiple deletions in mitochondriat DNA are present in senescent mouse brain. Biochem. Biophys. Res. Comm. 202(2):654–659, 1994.

    Article  PubMed  CAS  Google Scholar 

  9. Castora FJ and Simpson MV: Search for a DNA gyrase in mammalian mitochondria. J. Biol. Chem. 254(22): 11193–11195, 1979.

    Google Scholar 

  10. Castora FJ, Vissering FF and Simpson MV: The effect of bacterial DNA gyrase inhibitors on DNA synthesis in mammalian mitochondria. Biochim. Biophys. Acta 740(4):417–427, 1983.

    PubMed  CAS  Google Scholar 

  11. Chung SS, Weindruch R, Schwarze SR, McKenzie DI and Aiken JM: Multiple age-associated mitochondrial DNA deletions in skeletal muscle of mice. Aging Clin. Exp. Res. 6(3):193–200, 1994.

    CAS  Google Scholar 

  12. Clayton DA: Replication of animal mitochondrial DNA. Cell 28(4):693–705, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF and Wallace DC: Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nature Genet. 2(4):324–329, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Cortopassi GA and Arnheim N: Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucl. Acids Res. 18(23):6927–6933, 1990.

    PubMed  CAS  Google Scholar 

  15. Cortopassi GA, Shibata D, Soong NW and Arnheim N: A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc. Natl. Acad. Sci. USA 89(16):7370–7374, 1992.

    PubMed  CAS  Google Scholar 

  16. Degoul F, Nelson I, Amselem S, Romero N, Obermaier-Kusser B, Ponsot G, Marsac C and Lestienne P: Different mechanisms inferred from sequences of human mitochondrial DNA deletions in ocutar myopathies. Nucl. Acids Res. 19(3):493–496, 1991.

    PubMed  CAS  Google Scholar 

  17. Devereaux J, Haeberli P and Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12(1 Pt1):387–395, 1984.

    Google Scholar 

  18. Dizdaroglu M: Oxidative damage to DNA in mammalian chromatin. Mutat. Res. 275(3–6):331–342, 1992.

    PubMed  CAS  Google Scholar 

  19. Douc-Rasy S, Kayser A, Riou JF, and Riou G: ATP-independent type II topoisomerase from trypanosomes. Proc. Natl. Acad. Sci. USA 83(19):7152–7156, 1986.

    PubMed  CAS  Google Scholar 

  20. Edris W, Burgett B, Stine OC and Filburn CR: Detection and quantitation by competitive PCR of an age-associated increase in a 4.8-kb deletion in rat mitochondrial DNA. Mutat. Res. 316(2):69–78, 1994.

    PubMed  CAS  Google Scholar 

  21. Eimon PM, Chung SS, Lee CM, Weindruch R and Aiken JM: Age-associated mitochondrial DNA deletions in mouse skeletal muscle: comparison of different regions of the mitochondrial genome. Dev. Genet. 18(2):107–113, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Fleming JE, Miquel J, Cottrell SF, Yengoyan LS and Economos AC: Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 28(1):44–53, 1982.

    PubMed  CAS  Google Scholar 

  23. Fraga CG, Shigenaga MK, Park JW, Degan P and Ames BN: Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc. Natl. Acad. Sci. USA 87(12):4533–4537, 1990.

    PubMed  CAS  Google Scholar 

  24. Fragoso SP and Goldenberg S: Cloning and characterization of the gene encoding Trypanosoma cruzi DNA topoisomerase II. Mol. Biochem. Parasitol. 55(1–2):127–134, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Gadaleta MN, Rainaldi G, Lezza AMS, Milella F, Fracasso F and Cantatore P: Mitochondrial DNA copy number and mitochondrial DNA deletions in adult and senescent rats. Mutat. Res. 275(3–6):181–193, 1992.

    PubMed  CAS  Google Scholar 

  26. Gudikote JP and Van Tuyle GC: Rearrangements in the shorter arc of rat mitochondrial DNA involving the region of the heavy and light strand promoters. Mutat. Res. 356(2): 275–286, 1996.

    PubMed  CAS  Google Scholar 

  27. Harman, D: Free radical theory of aging: consequences of mitochondrial aging. Age 6(3):86–94, 1983.

    CAS  Google Scholar 

  28. Hattori K, Tanaka M, Sugiyama S, Obayashi T, Ito T, Satake T, Hanaki Y, Asai J, Nagano M and Ozawa T: Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia. Am. Heart J. 121(6): 1735–1742, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Hayakawa M, Torri K, Sugiyama S, Tanaka M and Ozawa T: Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem. Biophys. Res. Comm. 179(2):1023–1029, 1991.

    Article  PubMed  CAS  Google Scholar 

  30. Hayakawa M, Hattori K, Sugiyama S and Ozawa T: Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys. Res. Comm. 189(2):979–985, 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Hayakawa M, Sugiyama S, Hattori K, Takasawa M and Ozawa T: Age-associated damage in mitochondrial DNA in human hearts. Mol. Cell. Biochem. 119(1–2):95–103, 1993.

    Article  PubMed  CAS  Google Scholar 

  32. Holt IJ, Harding AE and Morgan-Hughes JA: Deletions of muscle mitochondrial DNA in mitochondrial myopathies: sequence analysis and possible mechanisms. Nucl. Acids Res. 17(12):4465–4469, 1989.

    PubMed  CAS  Google Scholar 

  33. Katayama M, Tanaka M, Yamamoto H, Ohbayashi T, Nimura Y and Ozawa T: Deleted mitochondrial DNA in the skeletal muscle of aged individuals. Biochem. Int. 25(1):47–56, 1991.

    PubMed  CAS  Google Scholar 

  34. Keefe DL, Niven-Fairchild T, Powell S and Buradagunta S: Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil. Steril. 64(3):577–583, 1995.

    PubMed  CAS  Google Scholar 

  35. King SR, Krolewski MA, Marvo SL, Lipson PJ, Pogue-Geile KL, Chung JH and Jaskunas R: Nucleotide sequence analysis of in vivo recombinants between bateriophage λ DNA and pBR322. Mol. Gen. Genet. 186(4): 548–557, 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Kitagawa T, Suganuma N, Nawa A, Kikkawa F, Tanaka M, Ozawa T and Tomoda Y: Rapid accumulation of deleted mitochondrial deoxyribonucleic acid in postmenopausal women. Biol. Reprod. 49(4):730–736, 1993.

    Article  PubMed  CAS  Google Scholar 

  37. Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E and Nishimura S: Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 327(6117): 77–79, 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Kunkel TA and Mosbaugh DW: Exonucleolytic proofreading by a mammalian DNA polymerase g. Biochem 28(3): 988–995, 1989.

    Article  CAS  Google Scholar 

  39. Lee CM, Chung SS, Kaczkowski JM, Weindruch R and Aiken JM: Multiple mitochondrial DNA deletions associated with age in skeletal muscle of rhesus monkeys. J. Gerontol. 48(6):B201–B205, 1993.

    PubMed  CAS  Google Scholar 

  40. Lee CM, Eimon P, Weindruch R and Aiken JM: Direct repeat sequences are not required at the breakpoints of age-associated mitochondrial DNA deletions in rhesus monkeys. Mech. Ageing Dev. 75(1):69–79, 1994.

    Article  PubMed  CAS  Google Scholar 

  41. Lee HC, Pang CY, Hsu HS and Wei YH: Differential accumulation of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim. Biophys. Acta 1226(1):37–43, 1994.

    PubMed  CAS  Google Scholar 

  42. Linnane AW, Marzuki S, Ozawa T and Tanaka M: Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet i(8639):642–645, 1989.

    Article  Google Scholar 

  43. Linnane AW, Baumer A, Maxwell RJ, Preston H, Zhang CF and Marzuki S: Mitochondrial gene mutation: the aging process and degenerative diseases. Biochem. Int. 22(6):1067–1076, 1990.

    PubMed  CAS  Google Scholar 

  44. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC and Beal MF: Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann. Neurol. 34(4):609–616, 1993.

    Article  PubMed  CAS  Google Scholar 

  45. Melendy T and Ray DS: Novobiovin affinity purification of a mitochondrial type II topoisomerase from the typanosomatid Crithidia fasciculata. J. Biol. Chem. 264(3):1870–1876, 1989.

    PubMed  CAS  Google Scholar 

  46. Melov S, Hertz GZ, Stormo GD and Johnson TE: Detection of deletions in the mitochondrial genome of Caenorhabditis elegans. Nucl. Acids Res. 22(6): 1075–1078, 1994.

    PubMed  CAS  Google Scholar 

  47. Melov S, Lithgow GJ, Fischer DR, Tedesco PM and Johnson TE: Increased frequency of deletions in the mitochondrial genomes with age of Caenorhabditis elegans. Nucl. Acids Res. 23(8): 1419–1425, 1995.

    PubMed  CAS  Google Scholar 

  48. Miquel J and Fleming JE: Theoretical and experimental support for an “oxygen radical-mitochondrial injury” hypothesis of cell aging in Free Radicals, Aging and Degenerative Diseases, edited by Johnson JE, Walford R, Harman D, Miquel J, New York, Liss, 1986, p.p. 51–74.

    Google Scholar 

  49. Mita S, Rizzuto R, Moraes C, Shanske S, Arnaudo E, Fabrizi GM, Koga Y, DiMauro S and Schon EA: Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucl. Acids Res. 18(3):561–567, 1990.

    PubMed  CAS  Google Scholar 

  50. Naito A, Naito S and Ikeda H: Homology is not required for recombination mediated by DNA gyrase of Escherichia coil. Mol. Gen. Genet. 193(2):238–243, 1984.

    Article  PubMed  CAS  Google Scholar 

  51. Pang CY, Lee HC, Yang JH and Wei YH: Human skin mitochondrial DNA deletions associated with light exposure. Arch. Biochem. Biophys. 312(2):534–538, 1994.

    Article  PubMed  CAS  Google Scholar 

  52. Pasion SG, Hines JC, Aebersold R and Ray DS: Molecular cloning and expression of the gene encoding the kinetoplast-associated type II topoisomerase of Crithidia fasciculata. Mol. Biochem. Parasitol. 50(1): 57–68, 1992.

    Article  PubMed  CAS  Google Scholar 

  53. Richter C, Park PW and Ames BN: Normal damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA. 85(17):6465–6467, 1988.

    PubMed  CAS  Google Scholar 

  54. Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M and DiMauro S: A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244(4902):346–349, 1989.

    PubMed  CAS  Google Scholar 

  55. Shibutani S, Takeshita M and Grollman AP: Insertions of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349(6308):431–434, 1991.

    Article  PubMed  CAS  Google Scholar 

  56. Shigenaga MK, Gimeno CJ and Ames BN: Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc. Natl. Acad. Sci. USA 86(24):9697–9701, 1989.

    PubMed  CAS  Google Scholar 

  57. Shlomai J, Zadok A and Frank D: A unique ATP-dependent DNA topoisomerase from trypanosomatids. Adv. Exp. Med. Biol. 179:409–422, 1984.

    PubMed  CAS  Google Scholar 

  58. Shoffner JM, Lott MT, Voliavec AS, Soueidan SA, Costigan DA and Wallace DC: Spontaneous Kearns-Sayre/chronic external opthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. Natl. Acad. Sci. USA 86(20):7952–7956, 1989.

    PubMed  CAS  Google Scholar 

  59. Simonetti S, Chen X, DiMauro S and Schon EA: Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim. Biophys. Acta 1180(2):113–122, 1992.

    PubMed  CAS  Google Scholar 

  60. Sohal RS and Brunk UT: Mitochondrial production of pro-oxidants and cellular senescence. Mutat. Res. 275(3–6):295–304, 1992.

    PubMed  CAS  Google Scholar 

  61. Sohal RS, Agarwal S, Candas M, Forster MJ and Lal H: Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech. Ageing Dev. 76(2–3):215–224, 1994.

    Article  PubMed  CAS  Google Scholar 

  62. Sohal RS and Weindruch R: Oxidative stress, caloric restriction, and aging. Science 273(5271): 59–63, 1996.

    PubMed  CAS  Google Scholar 

  63. Soong NW, Hinton DR, Cortopassi G and Arnheim N: Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nature Genet. 2(4):318–323, 1992.

    Article  PubMed  CAS  Google Scholar 

  64. Spitzner JR, Chung IK and Muller MT: Eukaryotic topoisomerase II preferentially cleaves alternating purine-pyrimidine repeats. Nucl. Acids Res. 18(1):1–11, 1990.

    PubMed  CAS  Google Scholar 

  65. Strauss PR, and Wang JC: The TOP2 gene of Trypanosoma brucei: a single-copy gene that shares extensive homology with other TOP2 genes encoding eukaryotic DNA topoisomerase II. Mol. Biochem. Parasitol. 38(1): 141–150, 1990.

    Article  PubMed  CAS  Google Scholar 

  66. Suganuma N, Kitagawa T, Nawa A and Tomoda Y: Human ovarian aging and mitochondrial DNA deletion. Horm. Res. 39(suppl. 1):16–21, 1993.

    Article  PubMed  CAS  Google Scholar 

  67. Sugiyama S, Hattori K, Hayakawa M and Ozawa T: Quantitative analysis of age-associated accumulation of mitochondrial DNA with deletion in human hearts. Biochem. Biophys. Res. Comm. 180(2):894–899, 1991.

    Article  PubMed  CAS  Google Scholar 

  68. Tanhauser SM and Laipis PJ: Multiple deletions are detectable in mitochondrial DNA of aging mice. J. Biol. Chem. 270(42):24769–24775, 1995.

    Google Scholar 

  69. Torii K, Sugiyama S, Tanaka M, Takagi K, Hanaki Y, Iida K, Matsuyama M, Hirabayashi N, Uno Y and Ozawa T: Aging-associated deletion of human diaphragmatic mitochondrial DNA. Am. J. Respir. Cell Mol. Biol. 6(5): 543–549, 1992.

    PubMed  CAS  Google Scholar 

  70. Tzagoloff A and Myers AM: Genetics of mitochondrial biogenesis. Annu. Rev. Biochem. 55:249–285, 1986.

    Article  PubMed  CAS  Google Scholar 

  71. Van Tuyle GC, Gudikote JP, Hurt VR, Miller BB and Moore CA: Multiple, large deletions in rat mitochondrial DNA: evidence for a major hot spot. Mutat. Res. 349(1):95–107, 1996.

    PubMed  CAS  Google Scholar 

  72. Volk MJ, Pugh TD, Kim M, Frith CH, Daynes RA, Ershler WB and Weindruch R: Dietary restriction from middle age attenuates age-associated lymphoma development and interleukin 6 dysregulation in C57BL/6 mice. Cancer Res. 54(11):3054–3061, 1994.

    PubMed  CAS  Google Scholar 

  73. von Zglinicki T and Bimmler M: Intercellular water and ionic shifts during growth and ageing of rats. Mech. Ageing Dev. 38(2):179–187, 1987.

    Article  Google Scholar 

  74. Vosberg HP: DNA topoisomerases: enzymes that control DNA conformation. Curr. Topics Microbiol. Immunol. 114:19–102, 1985.

    CAS  Google Scholar 

  75. Wagner JR, Hu CC and Ames BN: Endogenous oxidative damage of deoxycytidine in DNA. Proc. Natl. Acad. Sci. USA 89(8):3380–3384, 1992.

    PubMed  CAS  Google Scholar 

  76. Wallace DC: Diseases of the mitochondrial DNA. Annu. Rev. Biochem. 61:1175–1212, 1992.

    Article  PubMed  CAS  Google Scholar 

  77. Yamamoto H, Tanaka M, Katayama M, Obayashi T, Nimura Y and Ozawa T: Significant existence of deleted mitochondrial DNA in cirrhotic liver surrounding hepatic tumor. Biochem. Biophys. Res. Comm. 182(2): 913–920, 1992.

    Article  PubMed  CAS  Google Scholar 

  78. Yen TC, Su JH, King KL and Wei YH: Ageing-associated 5 Kb deletion in human liver mitochondrial DNA. Biochem. Biophys. Res. Comm. 178(1):124–131, 1991.

    Article  PubMed  CAS  Google Scholar 

  79. Yen TC, Pang CY, Hsieh RH, Su CH, King KL and Wei YH: Age-dependent 6 Kb deletion in human liver mitochondrial DNA. Biochem. Int. 26(3):457–468, 1992.

    PubMed  CAS  Google Scholar 

  80. Yoneda M, Katsumata K, Hayakawa M, Tanaka M and Ozawa T: Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochem. Biophys. Res. Comm. 209(2):723–729, 1995.

    Article  PubMed  CAS  Google Scholar 

  81. Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S and DiDonato S: An autosomal dominant disorder with multiple deletions of mtDNA starting at the D-loop region. Nature 339(6222):309–311, 1989.

    Article  PubMed  CAS  Google Scholar 

  82. Zhang C, Baumer A, Maxwell RJ, Linnane AW and Nagley P: Multiple mitochondrial DNA deletions in an elderly human individual. FEBS. 297(1, 2):34–38, 1992.

    Article  CAS  Google Scholar 

  83. Zhang C, Baumer A, Mackay IR, Linnane AW and Nagley P: Unusual pattern of mitochondrial DNA deletions in skeletal muscle of an adult human with chronic fatigue syndrome. Hum. Mol. Genet. 4(4):751–754, 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judd M. Aiken.

About this article

Cite this article

Chung, S.S., Eimon, P.M., Weindruch, R. et al. Analysis of age-associated mitochondrial DNA deletion breakpoint regions from mice suggests a novel model of deletion formation. AGE 19, 117–128 (1996). https://doi.org/10.1007/BF02434081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02434081

Key words

Navigation