Skip to main content
Log in

A sharp weightedL 2-estimate for the solution to the time-dependent Schrödinger equation

  • Published:
Arkiv för Matematik

Abstract

For Ξ∈R n,tR andfS(R n) define\(\left( {S^2 f} \right)\left( t \right)\left( \xi \right) = \exp \left( {it\left| \xi \right|^2 } \right)\hat f\left( \xi \right)\). We determine the optimal regularitys 0 such that

$$\int_{R^n } {\left\| {(S^2 f)[x]} \right\|_{L^2 (R)}^2 \frac{{dx}}{{(1 + |x|)^b }} \leqslant C\left\| f \right\|_{H^s (R^n )}^2 ,s > s_0 } ,$$

holds whereC is independent offS(R n) or we show that such optimal regularity does not exist. This problem has been treated earlier, e.g. by Ben-Artzi and Klainerman [2], Kato and Yajima [4], Simon [6], Vega [9] and Wang [11].

Our theorems can be generalized to the case where the exp(it|ξ|2) is replaced by exp(it|ξ|a),a≠2.

The proof uses Parseval's formula onR, orthogonality arguments arising from decomposingL 2(R n) using spherical harmonics and a uniform estimate for Bessel functions. Homogeneity arguments are used to show that results are sharp with respect to regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Artzi, M. andDevinatz, A., Local smoothing and convergence properties of Schrödinger type equations,J. Funct. Anal. 101 (1991), 231–254.

    MathSciNet  Google Scholar 

  2. Ben-Artzi, M. andKlainerman, S., Decay and regularity for the Schrödinger equation,J. Anal. Math. 58 (1992), 25–37.

    MathSciNet  Google Scholar 

  3. Hörmander, L.,The Analysis of Linear Partial Differential Operators I, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1990.

    Google Scholar 

  4. Kato, T. andYajima, K., Some examples of smooth operators and the associated smoothing effect,Rev. Math. Phys. 1 (1989), 481–496.

    Article  MathSciNet  Google Scholar 

  5. Kenig, C. E., Ponce, G. andVega, L., Oscillatory integrals and regularity of dispersive equations,Indiana Univ. Math. J. 40 (1991), 33–69.

    Article  MathSciNet  Google Scholar 

  6. Simon, B., Best constants in come operator smoothness estimates,J. Funct. Anal. 107 (1992), 66–71.

    Article  MATH  MathSciNet  Google Scholar 

  7. Sjölin, P., Regularity of solutions to the Schrödinger equation,Duke Math. J. 55 (1987), 699–715.

    Article  MATH  MathSciNet  Google Scholar 

  8. Stein, E. M. andWeiss, G.,Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N. J., 1971.

    Google Scholar 

  9. Vega, L., Schrödinger equations: pointwise convergence to the initial data,Proc. Amer. Math. Soc. 102 (1988), 874–878.

    MATH  MathSciNet  Google Scholar 

  10. Walther, B. G., Maximal estimates for oscillatory integrals with concave phase, inHarmonic Analysis and Operator Theory (Marcantognini, A. M., Mendoza, G. A., Morán, M. D., Octavio, A., and Urbina, W. O., eds.), Contemp. Math.189, pp. 485–495, Amer. Math. Soc., Providence, R. I., 1995.

    Google Scholar 

  11. Wang, S. L., On the weighted estimate of the solution associated with the Schrödinger equation,Proc. Amer. Math. Soc. 113 (1991), 87–92.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this research was carried out in July 1994 when I enjoyed a stay at Johannes Kepler Universität, Linz. I would like to thank Jim Cooper, Eva Matoušková, Paul Müller, Charles Stegall, Michael Schmuckenschläger and Renata Mühlbachler for having created a stimulating and friendly atmosphere in the functional analysis group at Linz. I would also like to thank Professor Per Sjölin for valuable comments and for encouraging me to carry out the investigation presented here, Professor Krzysztof Stempak, Uniwersytet Wrocławski, Wrocław for help regarding improvements of the presentation and the referee for comments and criticism.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther, B.G. A sharp weightedL 2-estimate for the solution to the time-dependent Schrödinger equation. Ark. Mat. 37, 381–393 (1999). https://doi.org/10.1007/BF02412222

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02412222

Keywords

Navigation