Skip to main content
Log in

Hausdorff dimension and Kleinian groups

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abikoff, W., On boundaries of Teichmüller spaces and on Kleinian groups, III.Acta Math., 134 (1976), 212–237.

    MathSciNet  Google Scholar 

  2. Ahlfors, L., Finitely generated Kleinian groups.Amer. J. Math., 86 (1964), 413–429.

    Article  MathSciNet  Google Scholar 

  3. Aravinda, C. S., Bounded geodesics and Hausdorff dimension.Math. Proc. Cambridge Philos. Soc., 116 (1994), 505–511.

    Article  MATH  MathSciNet  Google Scholar 

  4. Aravinda, C. S. &Leuzinger, E., Bounded geodesics in rank-1 locally symmetric spaces.Ergodic Theory Dynamical Systems, 15 (1995), 813–820.

    MATH  MathSciNet  Google Scholar 

  5. Beardon, A. F.,The Geometry of Discrete Groups. Graduate texts in Math., 91, Springer-Verlag, New York-Berlin, 1983.

    MATH  Google Scholar 

  6. Beardon, A. F. &Maskit, B., Limit points of Kleinian groups and finite sided fundamental polyhedra.Acta Math., 132 (1974), 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  7. Benedetti, R. &Petronio, C.,Lectures on Hyperbolic Geometry. Universitext, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  8. Bers, L., Inequalities for finitely generated Kleinian groups.J. Analyse Math., 18 (1967), 23–41.

    MATH  MathSciNet  Google Scholar 

  9. — On the boundaries of Teichmüller spaces and on Kleinian groups, I.Ann. of Math., 91 (1970), 570–600.

    Article  MATH  MathSciNet  Google Scholar 

  10. Bishop, C. J., Minkowski dimension and the Poincaré exponent.Michigan Math. J., 43 (1996), 231–246.

    Article  MATH  MathSciNet  Google Scholar 

  11. — Geometric exponents and Kleinian groups.Invent. Math., 127 (1997), 33–50.

    Article  MATH  MathSciNet  Google Scholar 

  12. Bishop, C. J. &Jones, P. W., Wiggly sets and limit sets.Ark. Mat., 35 (1997), 201–224.

    MATH  MathSciNet  Google Scholar 

  13. — The law of the iterated logarithim for Kleinian groups, to appear inLipa's Legacy (J. Dodziuk and L. Keen, eds.). Contemp. Math., Amer. Math. Soc., Providence, RI, 1997.

    Google Scholar 

  14. Bowditch, B. H., Geometrical finiteness for hyperbolic groups.J. Funct. Anal., 113 (1993), 245–317.

    Article  MATH  MathSciNet  Google Scholar 

  15. Bowen, R., Hausdorff dimension of quasicircles.Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11–25.

    MATH  MathSciNet  Google Scholar 

  16. Braam, P., A Kaluza-Klein approach to hyperbolic three-manifolds.Enseign. Math., 34 (1988), 275–311.

    MATH  MathSciNet  Google Scholar 

  17. Bullet, S. &Mantica, G., Group theory of hyperbolic circle packings.Nonlinearity, 5 (1992), 1085–1109.

    Article  MathSciNet  Google Scholar 

  18. Canary, R. D., The Poincaré metric and a conformal version of a theorem of Thurston.Duke Math. J., 64 (1991), 349–359.

    Article  MATH  MathSciNet  Google Scholar 

  19. — On the Laplacian and geometry of hyperbolic 3-manifolds.J. Differential Geom., 36 (1992), 349–367.

    MATH  MathSciNet  Google Scholar 

  20. — Ends of hyperbolic 3-manifolds.J. Amer. Math. Soc., 6 (1993), 1–35.

    Article  MATH  MathSciNet  Google Scholar 

  21. Canary, R. D. &Taylor, E., Kleinian groups with small limit sets.Duke Math. J., 73 (1994), 371–381.

    Article  MATH  MathSciNet  Google Scholar 

  22. Carleson, L.,Selected Problems on Exceptional Sets. Van Nostrand Math. Stud., 13. Van Nostrand, Princeton, NJ-Toronto, ON-London, 1967.

    MATH  Google Scholar 

  23. Chavel, I.,Eigenvalues in Riemannian Geometry. Pure Appl. Math., 115. Academic Press, Orlando, FL, 1984.

    MATH  Google Scholar 

  24. Cheeger, J. &Ebin, D. G.,Comparison Theorems in Riemannian Geometry. North-Holland Math. Libary, 9. North-Holland, Amsterdam-Oxford, 1975.

    MATH  Google Scholar 

  25. Corlette, K., Hausdorff dimensions of limit sets, I.Invent Math., 102 (1990), 521–542.

    Article  MATH  MathSciNet  Google Scholar 

  26. Corlette, K. & Iozzi, A., Limit sets of isometry groups of exotic hyperbolic spaces. Preprint, 1994.

  27. Dani, S. G., Bounded orbits of flows on homogeneous spaces.Comment. Math. Helv., 61 (1986), 636–660.

    MATH  MathSciNet  Google Scholar 

  28. Davies, E. B., Gaussian upper bounds for the heat kernel of some second-order operators on Riemannian manifolds.J. Funct. Anal., 80 (1988), 16–32.

    Article  MATH  MathSciNet  Google Scholar 

  29. Heat Kernels and Spectral Theory. Cambridge Tracts in Math., 92. Cambridge Univ. Press, Cambridge-New York, 1989.

    MATH  Google Scholar 

  30. — The state of the art for heat kernel bounds on negatively curved manifolds.Bull. London Math. Soc., 25 (1993), 289–292.

    MATH  MathSciNet  Google Scholar 

  31. Donnelly, H., Essential spectrum and heat kernel.J. Funct. Anal., 75 (1987), 362–381.

    Article  MATH  MathSciNet  Google Scholar 

  32. Epstein, D. B. A. &Marden, A., Convex hulls in hyperbolic spaces, a theorem of Sullivan and measured pleated surfaces, inAnalytical and Geometric Aspects of Hyperbolic Space, pp. 113–253. London Math. Soc. Lecture Note Ser., 111. Cambridge Univ. Press, Cambridge-New York, 1987.

    Google Scholar 

  33. Fernández, J. L., Domains with strong barrier.Rev. Mat. Iberoamericana, 5 (1989), 47–65.

    MATH  MathSciNet  Google Scholar 

  34. Fernández, J. L. &Melián, M. V., Bounded geodesics of Riemann surfaces and hyperbolic manifolds.Trans. Amer. Math. Soc., 347 (1995), 3533–3549.

    Article  MATH  MathSciNet  Google Scholar 

  35. González, M. J., Uniformly perfect sets, Green's function and fundamental domains.Rev. Mat. Iberoamericana, 8 (1992), 239–269.

    MATH  MathSciNet  Google Scholar 

  36. Greenberg, L., Fundamental polyhedron for Kleinian groups.Ann. of Math., 84 (1966), 433–441.

    Article  MATH  MathSciNet  Google Scholar 

  37. Grigor'yan, A., Heat kernel on a non-compact Riemannian manifold.Proc. Sympos. Pure Math., 57 (1995), 239–263.

    MATH  MathSciNet  Google Scholar 

  38. Helgason, S.,Groups and Geometric Analysis. Pure Appl. Math., 113. Academic Press, Orlando, FL, 1984.

    MATH  Google Scholar 

  39. Järvi, P. &Vuorinen, M., Uniformly perfect sets and quasiregular mappings.J. London Math. Soc., 54 (1996), 515–529.

    MATH  MathSciNet  Google Scholar 

  40. Jørgensen, T. &Marden, A., Algebraic and geometric convergence of Kleinian groups.Math. Scand., 66 (1990), 47–72.

    MATH  MathSciNet  Google Scholar 

  41. Kra, I. &Maskit, B., The deformation space of a Kleinian group.Amer. J. Math., 103 (1981), 1065–1102.

    Article  MATH  MathSciNet  Google Scholar 

  42. Larman, D. H., On the Besicovitch dimension of the residual set of arbitrary packed disks in the plane.J. London Math. Soc., 42 (1967), 292–302.

    MATH  MathSciNet  Google Scholar 

  43. Maskit, B., On boundaries of Teichmüller spaces and on Kleinian groups, II.Ann. of Math., 91 (1970), 607–639.

    Article  MATH  MathSciNet  Google Scholar 

  44. —,Kleinian Groups. Grundlehren Math. Wiss. 287. Springer-Verlag, Berlin-New York, 1988.

    MATH  Google Scholar 

  45. McMullen, C., Cusps are dense.Ann. of Math., 133 (1991), 217–247.

    Article  MATH  MathSciNet  Google Scholar 

  46. McShane, G., Parker, J. R. &Redfern, I., Drawing limit sets of Kleinian groups using finite state automata.Experiment. Math., 3 (1994), 153–170.

    MATH  MathSciNet  Google Scholar 

  47. Mostow, G.,Strong Rigidity of Locally Symmetric Spaces. Ann. of Math. Stud., 78. Princeton Univ. Press, Princeton, NJ, 1973.

    MATH  Google Scholar 

  48. Nicholls, P. J., The limit set of a discrete group of hyperbolic motions, inHolomorphic Functions and Moduli, Vol. II (Berkeley, CA, 1986), pp. 141–164. Math. Sci. Res. Inst. Publ., 11. Springer-Verlag, New York-Berlin, 1988.

    Google Scholar 

  49. The Ergodic Theory of Discrete Groups. London Math. Soc. Lecture Note Ser., 143. Cambridge Univ. Press, Cambridge, 1989.

    MATH  Google Scholar 

  50. Parker, J. R., Kleinian circle packings.Topology, 34 (1995), 489–496.

    Article  MATH  MathSciNet  Google Scholar 

  51. Patterson, S. J., The exponent of convergence of Poincaré series.Monatsh. Math., 82 (1976), 297–315.

    Article  MATH  MathSciNet  Google Scholar 

  52. — Lectures on measures on limit sets of Kleinian groups, inAnalytical and Geometric Aspects of Hyperbolic Space, pp. 281–323. London Math. Soc. Lecture Note Ser., 111. Cambridge Univ. Press, Cambridge-New York, 1987.

    Google Scholar 

  53. Pommerenke, Ch., On uniformly perfect sets and Fuchsian groups.Analysis, 4 (1984), 299–321.

    MATH  MathSciNet  Google Scholar 

  54. Stratmann, B., The Hausdorff dimension of bounded geodesics on geometrically finite manifolds.Ergodic Theory Dynamical Systems, 17 (1997), 227–246.

    Article  MATH  MathSciNet  Google Scholar 

  55. Stratmann, B. &Urbanski, M., The box counting dimension for geometrically finite Kleinian groups.Fund. Math., 149 (1996), 83–93.

    MATH  MathSciNet  Google Scholar 

  56. Stratmann, B. &Velani, S. L., The Patterson measure for geometrically finite groups with parabolic elements, new and old.Proc. London Math. Soc., 71 (1995), 197–220.

    MATH  MathSciNet  Google Scholar 

  57. Sullivan, D., The density at infinity of a discrete groups of hyperbolic motions.Inst. Hautes Études Sci. Publ. Math., 50 (1979), 172–202.

    Google Scholar 

  58. —, Growth of positive harmonic functions and Kleinian group limit sets of planar measure 0 and Hausdorff dimension 2, inGeometry Symposium (Utrecht, 1980), pp. 127–144. Lecture Notes in Math., 894. Springer-Verlag, Berlin-New York, 1981.

    Google Scholar 

  59. — Discrete conformal groups and measurable dynamics.Bull. Amer. Math. Soc., 6 (1982), 57–73.

    Article  MATH  MathSciNet  Google Scholar 

  60. —, Entropy, Hausdorff measures new and old and limit sets of geometrically finite Kleinian groups.Acta Math., 153 (1984), 259–277.

    Article  MATH  MathSciNet  Google Scholar 

  61. — Related aspects of positivity in Riemannian geometry.J. Differential Geom., 25 (1987), 327–351.

    MATH  MathSciNet  Google Scholar 

  62. Taylor, E., On the volume of convex cores under algebraic and geometric convergence. PhD Thesis, SUNY at Stony Brook, 1994.

  63. Tukia, P., The Hausdorff dimension of the limit set of a geometrically finite Kleinian group.Acta Math., 152 (1984), 127–140.

    Article  MATH  MathSciNet  Google Scholar 

  64. — On the dimension of limit sets of geometrically finite Möbius groups.Ann. Acad. Sci. Fenn. Ser. A I Math., 19 (1994), 11–24.

    MATH  MathSciNet  Google Scholar 

  65. — The Poincaré series and the conformal measure of conical and Myrberg limit points.J. Analyse Math., 62 (1994), 241–259.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author is partially supported by NSF Grant DMS-92-04092 and an Alfred P. Sloan research fellowship. The second author is partially supported by NSF Grant DMS-92-13595.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, C.J., Jones, P.W. Hausdorff dimension and Kleinian groups. Acta Math 179, 1–39 (1997). https://doi.org/10.1007/BF02392718

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392718

Keywords

Navigation