Skip to main content
Log in

Matrilineal kin relationship and social behavior of wild bonobos (Pan paniscus): Sequencing the D-loop region of mitochondrial DNA

  • Published:
Primates Aims and scope Submit manuscript

Abstract

Matrilineal kin-relations among wild bonobos (Pan paniscus) were studied by DNA analysis. Subject individuals were the members of E1 group, living at Wamba, Zaire, which has been studied since 1974. DNA samples were extracted from wadges that bonobos spat out when feeding on sugar cane. The D-loop region of mitochondrial DNA was amplified by the PCR method, and a nucleotide sequence of 350 base pairs was determined for 17 individuals. Nucleotide variations were found at 44 positions of the sequence. Based on these variations, 13 matrilineal units were divided into seven groups, and the mother of an orphan male was determined among several females. These genetic analyses, together with behavioral observation to date, revealed the following facts. High sequence variation in the target region indicated that females transfer between groups of bonobos, which is in agreement with supposition from long-term field studies. For females, there was no relationship between genetic closeness and social closeness that is represented by frequencies of proximity or grooming. After immigration into a new group, females form social associations with senior females without regard to kin relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, S.;Bankier, A. T.;Barrell, B. G.;de Bruijn, M. H. L.;Coulson, A. R.;Drouin, J.;Eperon, I. C.;Nierlich, D. P.;Roe, B. A.;Sanger, F.;Schreier, P. H.;Smith, A. J. H.;Staden, R.;Young, I. G. 1981. Sequence and organization of the human mitochondrial genome.Nature, 290: 457–465.

    CAS  PubMed  Google Scholar 

  • Elsacker, L. V. 1995. A review of terminology on aggregation patterns in bonobos (Pan paniscus).Int. J. Primatol., 16: 37–52.

    Google Scholar 

  • Felsenstein, J. 1993. PHYLIP (phylogeny inference package) Version 3.5c. Distributed by the author. Dept. Genet., Univ. of Washington, Seattle.

    Google Scholar 

  • Furuichi, T. 1987. Sexual swelling, receptivity, and grouping of wild pygmy chimpanzee females at Wamba, Zaire.Primates, 28: 309–318.

    Article  Google Scholar 

  • Furuichi, T. 1989. Social interactions and the life history of femalePan paniscus in Wamba, Zaire.Int. J. Primatol., 10: 173–197.

    Google Scholar 

  • Furuichi, T.; Idani, G.; Ihobe, H.; Kuroda, S.; Kitamura, K.; Mori, A.; Enomoto, T.; Okayasu, N.; Hashimoto, C.; Kano, T. 1995. Population dynamics of wild groups of bonobos at Wamba, Zaire. Paper presented at the 11th Congress of the Primate Society of Japan, Aichi, Japan.

  • Furuichi, T.;Ihobe, H. 1995. Variation in male relationships in bonobos and chimpanzees.Behaviour, 130: 212–228.

    Google Scholar 

  • Goodall, J. 1986.The Chimpanzees of Gombe: Patterns of Behavior. Harvard Univ. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Hashimoto, C.;Furuchi, T. 1994. Social role and development of noncopulatory sexual behavior of wild bonobos. In:Chimpanzee Cultures,Wrangham,R. W.;McGrew,W. C.;de Waal,B. M.;Heltne,P. G. (eds.), Harvard Univ. Press, Cambridge, Massachusetts & London, pp. 155–168.

    Google Scholar 

  • Higuchi, R.;von Beroldingen, C. H.;Sensabaugh, G. F.;Erlich, H. A. 1988. DNA typing from single hairs.Nature, 332: 543–546.

    Article  CAS  PubMed  Google Scholar 

  • Idani, G. 1990. Relations between unit-groups of bonobos at Wamba, Zaire: encounters and temporary fusions.Afr. St. Monogr., 11: 153–186.

    Google Scholar 

  • Idani, G. 1991. Social relationships between immigrant and resident bonobo (Pan paniscus) females at Wamba.Folia Primatol., 57: 83–95.

    CAS  PubMed  Google Scholar 

  • Ihobe, H. 1992. Male-male relationships among wild bonobos (Pan paniscus) at Wamba, Republic of Zaire.Primates, 33: 163–179.

    Google Scholar 

  • Inoue, M.;Takenaka, A.;Tanaka, S.;Kominami, R.;Takenaka, O. 1990. Paternity discrimination in a Japanese macaque group by DNA fingerprinting.Primates, 31: 563–570.

    Google Scholar 

  • Inoue, M.;Takenaka, O. 1993. Japanese macaque microsatellite PCR primers for paternity testing.Primates, 34: 37–45.

    Google Scholar 

  • Jeffereys, A. J.;Wilson, V.;Thein, S. L. 1985. Hypervariable “microsatellite” regions in human DNA.Nature, 314: 67–73.

    Google Scholar 

  • Kano, T. 1982. The social group of pygmy chimpanzees (Pan paniscus) of Wamba.Primates, 23: 171–188.

    Google Scholar 

  • Kano, T. 1992.The Last Ape: Pygmy Chimpanzee Behavior and Ecology. Stanford Univ. Press, Stanford.

    Google Scholar 

  • Kitamura, K. 1983. Pygmy chimpanzee association patterns in ranging.Primates, 24: 1–12.

    Google Scholar 

  • Kocher, T. D.;Wilson, A. G. 1991. Sequence evolution of mitochondrial DNA in humans and chimpanzees: control region and a protein-coding region. In:Evolution of Life: Fossils, Molecules, and Culture,Osawa,S.;Honjo,T. (eds.), Springer-Verlag, Tokyo, pp. 391–413.

    Google Scholar 

  • Kuroda, S. 1980. Social behavior of the pygmy chimpanzees.Primates, 21: 181–197.

    Google Scholar 

  • Lipman, D. J.;Pearson, W. R. 1985. Rapid and sensitive protein similarity searches.Science, 227: 1435–1441.

    CAS  PubMed  Google Scholar 

  • Litt, M.;Luty, J. A. 1989. A hypervariable microsatellite revealed byin vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene.Amer. J. Hum. Genet., 44: 397–401.

    CAS  PubMed  Google Scholar 

  • Morin, P. A.;Moore, J. J.:Chakraborty, R. C.;Jin, L.;Goodall, J.;Woodruff, D. S. 1994. Kin selection, social structure, gene flow, and the evolution of chimpanzees.Science, 265: 1193–1201.

    CAS  PubMed  Google Scholar 

  • Murray, M. G.;Thompson, W. F. 1980. Rapid isolation of high-molecular-weight plant DNA.Nucl. Acids. Res., 8: 4321–4325.

    CAS  PubMed  Google Scholar 

  • Sokal, R. R.;Michener, C. D. 1985. A statistical method for evaluating systematic relationships.Univ. of Kansas Sci. Bull., 28: 1409–1438.

    Google Scholar 

  • Takasaki, H.;Takenaka, O. 1991. Paternity testing in chimpanzees with DNA amplification from hairs and buccal cells in wadges: a preliminary note. In:Primatology Today,Ehara,A.;Kimura,T.;Takenaka,O.;Iwamoto,M. (eds.), Elsevier, Amsterdam, pp. 612–616.

    Google Scholar 

  • Takenaka, O.;Takasaki, H.;Kawamoto, S.;Arakawa, M.;Takenaka, A. 1993. Polymorphic microsatellite DNA amplification customized for chimpanzee paternity testing.Primates, 34: 27–35.

    Google Scholar 

  • Tegelström, H. 1986. Mitochondrial DNA in natural populations: an improved routine for the screening of genetic variation based on sensitive silver staining.Electrophoresis, 7: 226–229.

    Google Scholar 

  • de Waal, F. B. M. 1995. Bonobo sex and society.Sci. Amer., 272: 82–88.

    PubMed  Google Scholar 

  • Weber, J. L.;May, P. E. 1989. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction.Amer. J. Human Genet., 44: 388–396.

    CAS  Google Scholar 

  • White, F. J. 1988. Party composition and dynamics inPan paniscus.Int. J. Primatol., 9: 179–193.

    Google Scholar 

  • Wrangham, R. W. 1993. The evolution of sexuality in chimpanzees and bonobos.Human Nature, 4: 47–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hashimoto, C., Takenaka, O. & Furuichi, T. Matrilineal kin relationship and social behavior of wild bonobos (Pan paniscus): Sequencing the D-loop region of mitochondrial DNA. Primates 37, 305–318 (1996). https://doi.org/10.1007/BF02381862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02381862

Key Words

Navigation