Skip to main content
Log in

Mechanotransduction of bone cellsin vitro: Mechanobiology of bone tissue

  • Special Section: Biomechanical Interactions in Tissue Engineering and Surgical Repair (BITES)
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Mechanical force plays an important role in the regulation of bone remodelling in intact bone and bone repair. In vitro, bone cells demonstrate a high responsiveness to mechanical stimuli. Much debate exists regarding the critical components in the load profile and whether different components, such as fluid shear, tension or compression, can influence cells in differing ways. During dynamic loading of intact bone, fluid is pressed through the osteocyte canaliculi, and it has been demonstrated that fluid shear stress stimulates osteocytes to produce signalling molecules. It is less clear how mechanical loads act on mature osteoblasts present on the surface of cancellous or trabecular bone. Although tissue strain and fluid shear stress both cause cell deformation, these stimuli could excite different signalling pathways. This is confirmed by our experimental findings, in human bone cells, that strain applied through the substrate and fluid flow stimulate the release of signalling molecules to varying extents. Nitric oxide and prostaglandin E2 values increased by between two- and nine-fold after treatment with pulsating fluid flow (0.6±0.3 Pa). Cyclic strain (1000 μstrain) stimulated the release of nitric oxide two-fold, but had no effect on prostaglandin E2. Furthermore, substrate strains enhanced the bone matrix protein collagen I two-fold, whereas fluid shear caused a 50% reduction in collagen I. The relevance of these variations is discussed in relation to bone growth and remodelling. In applications such as tissue engineering, both stimuli offer possibilities for enhancing bone cell growth in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajubi, N. E., Klein-Nulend, J., Nijweide, P. J., Vrijheid-Lammers, T., Alblas, M. J., andBurger, E. H. (1996): ‘Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes-a cytoskeleton-dependent process’,Biochem. Biophys. Res. Commun.,225, pp. 62–68

    Article  Google Scholar 

  • Akhouayri, O., Lafage-Proust, M. H., Rattner, A., Laroche, N., Caillot-Augusseau, A., Alexandre, C., andVico, L. (1999): ‘Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels’,J. Cell Biochem.,76, pp. 217–230

    Google Scholar 

  • Ali, M. H., andSchumacker, P. T. (2002): ‘Endothelial responses to mechanical stress: where is the mechanosensor?’,Crit. Care Med.,30, pp. S198-S206

    Google Scholar 

  • Altman, G. H., Horan, R. L., Martin, I., Farhadi, J., Stark, P. R., Volloch, V., Richmond, J. C., Vunjak-Novakovic, G., andKaplan, D. L. (2002): ‘Cell differentiation by mechanical stress’,FASEB J.,16, pp. 270–272

    Google Scholar 

  • Aspenberg, P., Goodman, S., Toksvig-Larsen, S., Ryd, L., andAlbrektsson, T. (1992): ‘Intermittent micromotion inhibits bone ingrowth. Titanium implants in rabbits’,Acta Orthop. Scand.,63, pp. 141–145

    Google Scholar 

  • Augat, P., Merk, J., Wolf, S., andClaes, L. (2001): ‘Mechanical stimulation by external application of cyclic tensile strains does not effectively enhance bone healing’,J. Orthop. Trauma,15, pp. 54–60

    Google Scholar 

  • Barnes, G. L., Kostenuik, P. J., Gerstenfeld, L. C., andEinhorn, T. A. (1999): ‘Growth factor regulation of fracture repair’,J. Bone Miner. Res.,14, pp. 1805–1815

    Google Scholar 

  • Basso, N., andHeersche, J. N. (2002) ‘Characteristics ofin vitro osteoblastic cell loading models’,Bone,30, pp. 347–351

    Article  Google Scholar 

  • Bottlang, M., Simnacher, M., Schmitt, H., Brand, R. A., andClaes, L. (1997): ‘A cell strain system for small homogeneous strain applications’,Biomed. Tech. (Berl.),42, pp. 305–309

    Google Scholar 

  • Brighton, C. T., Fisher, J. R. Jr., Levine, S. E., Corsetti, J. R., Reilly, T., Landsman, A. S., Williams, J. L., andThibault, L. E. (1996): ‘The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus’,J. Bone Joint Surg. Am.,78, pp. 1337–1347

    Google Scholar 

  • Brodland, G. W., Dolovich, A. T., andDavies, J. E. (1992): ‘Pretension critically affects the incremental strain field on pressure- loaded cell substrate membranes’,J. Biomech. Eng.,114, pp. 418–420

    Google Scholar 

  • Brown, T. D. (2000): ‘Techniques for mechanical stimulation of cellsin vitro: a review’,J. Biomech.,33, pp. 3–14

    Article  Google Scholar 

  • Burger, E. H., andKlein-Nulend, J. (1999): ‘Mechanotransduction in bone-role of the lacuno-canalicular network’,FASEB J.,13, pp. S101-S112

    Google Scholar 

  • Burr, D. B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska, M., Finestone, A., Hoshaw, S., Saiag, E., andSimkin, A. (1996): ‘In vivo measurement of human tibial strains during vigorous activity’,J Bone,18, pp. 405–410

    Google Scholar 

  • Busse, R., andFleming, I. (1998): ‘Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors’,J. Vasc. Res.,35, pp. 73–84

    Article  Google Scholar 

  • Chiquet, M., Matthisson, M., Koch, M., Tannheimer, M., andChiquet-Ehrismann, R. (1996): ‘Regulation of extracellular matrix synthesis by mechanical stress’,Biochem. Cell Biol.,74, pp. 737–744

    Google Scholar 

  • Cillo, J. E. Jr., Gassner, R., Koepsel, R. R., andBuckley, M. J. (2000): ‘Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis’,Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.,90, pp. 147–154

    Google Scholar 

  • Eastwood, M., McGrouther, D. A., andBrown, R. A. (1998): ‘Fibroblast responses to mechanical forces’,Proc. Inst. Mech. Eng. [H.],212, pp. 85–92

    Google Scholar 

  • El Haj, A. J., Walker, L. M., Preston, M. R., andPublicover, S. J. (1999): ‘Mechanotransduction pathways in bone: calcium fluxes and the role of voltage-operated calcium channels’,Med. Biol. Eng. Comput.,37, pp. 403–409

    Google Scholar 

  • Forwood, M. R. (1996): ‘Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loadingin vivo, J. Bone Miner. Res.,11, pp. 1688–1693

    Google Scholar 

  • Forwood, M. R., Kelly, W. L., andWorth, N. F. (1998): ‘Localisation of prostaglandin endoperoxide H synthase (PGHS)-1 and PGHS-2 in bone following mechanical loading in vivo’,Anat. Rec.,252, pp. 580–586

    Article  Google Scholar 

  • Frangos, J. A., Eskin, S. G., andIves, C. L. (1985): ‘Flow effects on prostacyclin production by cultured human endothelial cells’,Science,227, pp. 1477–1479

    Google Scholar 

  • Gassner, R. J., Buckley, M. J., Studer, R. K., Evans, C. H., andAgarwal, S. (2000): ‘Interaction of strain and interleukin-1 in articular cartilage: effects on proteoglycan synthesis in chondrocytes’,Int. J. Oral Maxillofac. Surg.,29, pp. 389–394

    Article  Google Scholar 

  • Goodship, A. E., Cunningham, J. L., andKenwright, J. (1998): ‘Strain rate and timing of stimulation in mechanical modulation of fracture healing’,Clin. Orthop.,355, pp. S105-S115

    Google Scholar 

  • Hankemeier, S., Grassel, S., Plenz, G., Spiegel, H. U., Bruckner, P., andProbst, A. (2001): ‘Alteration of fracture stability influences chondrogenesis, osteogenesis and immigration of macrophages’,J. Orthop. Res.,19, pp. 531–538

    Article  Google Scholar 

  • Hannouche, D., Petite, H., andSedel, L. (2001): ‘Current trends in the enhancement of fracture healing’,J. Bone Joint Surg. Br.,83, pp. 157–164

    Article  Google Scholar 

  • Helfrich, M. H., Evans, D. E., Grabowski, P. S., Pollock, J. S., Ohshima, H., andRalston, S. H. (1997): ‘Expression of nitric oxide synthase isoforms in bone and bone cell cultures’,J. Bone Miner. Res.,12, pp. 1108–1115

    Google Scholar 

  • Hert, J. (1994): ‘A new attempt at the interpretation of the functional architecture of the cancellous bone’,J. Biomech.,27, pp. 239–242

    Article  Google Scholar 

  • Howard, P. S., Kucich, U., Taliwal, R., andKorostoff, J. M. (1998): ‘Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts’,J. Periodontal Res.,33, pp. 500–508

    Google Scholar 

  • Ikegame, M., Ishibashi, O., Yoshizawa, T., Shimomura, J., Komori, T., Ozawa, H., andKawashima, H. (2001): ‘Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture’,J. Bone Miner. Res.,16, pp. 24–32

    Google Scholar 

  • Ilizarov, G. A. (1989): ‘The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction’,Clin. Orthop.,239, pp. 263–285

    Google Scholar 

  • Ilizarov, G. A. (1990): ‘Clinical application of the tension-stress effect for limb lengthening’,Clin. Orthop.,250, pp. 8–26

    Google Scholar 

  • Jee, W. S. S. (2001): ‘Integrated bone tissue physiology: anatomy and physiology’, inCowing, S. C. (Ed.): ‘Bone mechanics handbook’ (CRC Press, Boca Raton, FL, USA, 2001)

    Google Scholar 

  • Jessop, H. L., Rawlinson, S. C., Pitsillides, A. A., andLanyon, L. E. (2002): ‘Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways’,Bone,31, pp. 186–194

    Article  Google Scholar 

  • Joldersma, M., Klein-Nulend, J., Oleksik, A. M., Heyligers, I. C., andBurger, E. H. (2001): ‘Estrogen enhances mechanical stress-induced prostaglandin production by bone cells from elderly women’,Am. J. Physiol. Endocrinol. Metab.,280, pp. E436-E442

    Google Scholar 

  • Jones, D. B., Nolte, H., Scholubbers, J. G., Turner, E., andVeltel, D. (1991): ‘Biochemical signal transduction of mechanical strain in osteoblast-like cells’,Biomaterials,12, pp. 101–110

    Article  Google Scholar 

  • Kamiya, A., andAndo, J. (1996): ‘Response of vascular endothelial cells to fluid shear stress: mechanism’, inHayashi, A., Kamiyn, A., andOno, K. (Eds.): ‘Biomechanics-functional adaptation and remodeling’ (Springer, Tokyo, 1996), pp. 29–56

    Google Scholar 

  • Kaspar, D., Seidl, W., Neidlinger-Wilke, C., Ignatius, A., andClaes, L. (2000): ‘Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity’,J. Biomech.,33, pp. 45–51

    Article  Google Scholar 

  • Kaspar, D., Seidl, W., Neidlinger-Wilke, C., Beck, A., Claes, L., andIgnatius, A. (2002): ‘Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain’,J. Biomech.,35, pp. 873–880

    Article  Google Scholar 

  • Kawata, A., andMikuni-Takagaki, Y. (1998): ‘Mechanotransduction in stretched osteocytes—temporal expression of immediate early and other genes’,Biochem. Biophys. Res. Commun.,246, pp. 404–408

    Article  Google Scholar 

  • Kessler, P. A., Merten, H. A., Neukam, F. W., andWiltfang, J. (2002): ‘The effects of magnitude and frequency of distraction forces on tissue regeneration in distraction osteogenesis of the mandible’,Plast. Reconstr. Surg.,109, pp. 171–180

    Google Scholar 

  • Klein-Nulend, J., Semeins, C. M., Ajubi, N. E., Nijweide, P. J., andBurger, E. H. (1995a): ‘Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts-correlation with prostaglandin upregulation’,Biochem. Biophys. Res. Commun.,217, pp. 640–648

    Google Scholar 

  • Klein-Nulend, J., Van Der Plas, A., Semeins, C. M., Ajubi, N. E., Frangos, J. A., Nijweide, P. J., andBurger, E. H. (1995b): ‘Sensitivity of osteocytes to biomechanical stressin vitro’,FASEB J.,9, pp. 441–445

    Google Scholar 

  • Klein-Nulend, J., Burger, E. H., Semeins, C. M., Raisz, L. G., andPilbeam, C. C. (1997): ‘Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells’,J. Bone Miner. Res.,12, pp. 45–51

    Google Scholar 

  • Klein-Nulend, J., Helfrich, M. H., Sterck, J. G., MacPherson, H., Joldersma, M., Ralston, S. H., Semeins, C. M., andBurger, E. H. (1998): ‘Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent’,Biochem. Biophys. Res. Commun.,250, pp. 108–114

    Article  Google Scholar 

  • Knothe Tate, M. L., Steck, R., Forwood, M. R., andNiederer, P. (2000): ‘In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation’,J. Exp. Biol.,203, pp. 2737–2745

    Google Scholar 

  • Lanyon, L. E., andBourn, S. (1979): ‘The influence of mechanical function on the development and remodeling of the tibia. An experimental study in sheep’,J. Bone Joint Surg. Am.,61, pp. 263–273

    Google Scholar 

  • Larsson, S., Kim, W., Caja, V. L., Egger, E. L., Inoue, N., andChao, E. Y. (2001): ‘Effect of early axial dynamization on tibial bone healing: a study in dogs’,Clin. Orthop.,388, pp. 240–251

    Google Scholar 

  • Lee, H. S., Millward-Sadler, S. J., Wright, M. O., Nuki, G., andSalter, D. M. (2000): ‘Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and beta-catenin in human articular chondrocytes after mechanical stimulation’,J. Bone Miner. Res.,15, pp. 1501–1509

    Google Scholar 

  • Lyall, F., andEl Haj, A. J. (1994): ‘Cells and biomechanics’ (Cambridge University Press, 1994)

  • Mak, A. F., Huang, D. T., Zhang, J. D., andTong, P. (1997): ‘Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity’,J. Biomech.,30, pp. 11–18

    Article  Google Scholar 

  • Meyer, U., Meyer, T., Wiesmann, H. P., Stratmann, U., Kruse-Losler, B., Maas, H., andJoos, U. (1999): ‘The effect of magnitude and frequency of interfragmentary strain on the tissue response to distraction osteogenesis’,J. Oral Maxillofac. Surg.,57, pp. 1331–1339

    Google Scholar 

  • Meyer, U., Wiesmann, H. P., Meyer, T., Schulze-Osthoff, D., Jasche, J., Kruse-Losler, B., andJoos, U. (2001): ‘Microstructural investigations of strain-related collagen mineralization’,Br. J. Oral Maxillofac. Surg.,39, pp. 381–389

    Google Scholar 

  • Mikuni-Takagaki, Y., Suzuki, Y., Kawase, T., andSaito, S. (1996): ‘Distinct responses of different populations of bone cells to mechanical stress’,Endocrinology,137, pp. 2028–2035

    Article  Google Scholar 

  • Mikuni-Takagaki, Y. (1999): ‘Mechanical responses and signal transduction pathways in stretched osteocytes’,J. Bone Miner. Metab.,17, pp. 57–60

    Article  Google Scholar 

  • Miyauchi, A., Notoya, K., Mikuni-Takagaki, Y., Takagi, Y., Goto, M., Miki, Y., Takano-Yamamoto, T., Jinnai, K., Takahashi, K., Kumegawa, M., Chihara, K., andFujita, T. (2000): ‘Parathyroid hormone-activated volume-sensitive calcium influx pathways in mechanically loaded osteocytes’,J. Biol. Chem.,275, pp. 3335–3342

    Article  Google Scholar 

  • Mosley, J. R., andLanyon, L. E. (1998): ‘Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats’,Bone,23, pp. 313–318

    Article  Google Scholar 

  • Murray, D. W., andRushton, N. (1990): ‘The effect of strain on bone cell prostaglandin E2 release: a new experimental method’,Calcif. Tissue Int.,47, pp. 35–39

    Google Scholar 

  • Neidlinger-Wilke, C., Wilke, H. J., andClaes, L. (1994): ‘Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application’,J. Orthop. Res.,12, pp. 70–78

    Article  Google Scholar 

  • Neidlinger-Wilke, C., Stalla, I., Claes, L., Brand, R., Hoellen, I., Rubenacker, S., Arand, M., andKinzl, L. (1995): ‘Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF beta-release in response to cyclic strain’,J. Biomech.,28, pp. 1411–1418

    Google Scholar 

  • Neidlinger-Wilke, C., Grood, E. S., Wang, J. H. C., Brand, R. A., andClaes, L. (2001): ‘Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates’,J. Orthop. Res.,19, pp. 286–293

    Article  Google Scholar 

  • Owan, I., Burr, D. B., Turner, C. H., Qiu, J., Tu, Y., Onyia, J. E., andDuncan, R. L. (1997): ‘Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain’,Am. J. Physiol.,273, pp. C810-C815

    Google Scholar 

  • Paccione, M. F., Mehrara, B. J., Warren, S. M., Greenwald, J. A., Spector, J. A., Luchs, J. S., andLongaker, M. T. (2001): ‘Rat mandibular distraction osteogenesis: latency, rate, and rhythm determine the adaptive response’,J. Craniofac. Surg.,12, pp. 175–182

    Google Scholar 

  • Peake, M. A., Cooling, L. M., Magnay, J. L., Thomas, P. B., andEl Haj, A. J. (2000): ‘Selected contribution: regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells’,J. Appl. Physiol.,89, pp. 2498–2507

    Google Scholar 

  • Petrtyl, M., Hert, J., andFiala, P. (1996): ‘Spatial organization of the haversian bone in man’,J. Biomech.,29, pp. 161–169

    Google Scholar 

  • Pitsillides, A. A., Rawlinson, S. C., Suswillo, R. F., Bourrin, S., Zaman, G., andLanyon, L. E. (1995): ‘Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling?’,FASEB J.,9, pp. 1614–1622

    Google Scholar 

  • Prajapati, R. T., Eastwood, M., andBrown, R. A. (2000): ‘Duration and orientation of mechanical loads determine fibroblast cyto-mechanical activation: monitored by protease release’,Wound. Repair Regen.,8, pp. 238–246

    Google Scholar 

  • Radomisli, T. E., Moore, D. C., Barrach, H. J., Keeping, H. S., andEhrlich, M. G. (2001): ‘Weight-bearing alters the expression of collagen types I and II, BMP 2/4 and osteocalcin in the early stages of distraction osteogenesis’,J. Orthop. Res.,19, pp. 1049–1056

    Article  Google Scholar 

  • Rawlinson, S. C., El Haj, A. J., Minter, S. L., Tavares, I. A., Bennett, A., andLanyon, L. E. (1991): ‘Loading-related increases in prostaglandin production in cores of adult canine cancellous bonein vitro: a role for prostacyclin in adaptive bone remodeling?’,J. Bone Miner. Res.,6, pp. 1345–1351

    Google Scholar 

  • Rubin, C. T. (1984): ‘Skeletal strain and the functional significance of bone architecture’,Calcif. Tissue Int.,36, pp. S11-S18

    Google Scholar 

  • Shelton, R. M., andEl Haj, A. J. (1992): ‘A novel microcarrier bead model to investigate bone cell responses to mechanical compressionin vitro’,J. Bone Miner. Res., pp. S403–S405

  • Smalt, R., Mitchell, F. T., Howard, R. L., andChambers, T. J. (1997): ‘Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain’,Am. J. Physiol.,273, pp. E751-E758

    Google Scholar 

  • Tanaka, S. M., Li, J., Duncan, R. L., Yokota, H., Burr, D. B., andTurner, C. H. (2003): ‘Effects of broad frequency vibration on cultured osteoblasts’,J. Biomech.,36, pp. 73–80

    Article  Google Scholar 

  • Tate, M. L., Niederer, P., andKnothe, U. (1998): ‘In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading’,Bone,22, pp. 107–117

    Google Scholar 

  • Thomas, G. P., andEl Haj, A. J. (1996): ‘Bone marrow stromal cells are load responsivein vitro’,Calcif. Tissue Int.,58, pp. 101–108

    Article  Google Scholar 

  • Thoumine, O., Ziegler, T., Girard, P. R., andNerem, R. M. (1995): ‘Elongation of confluent endothelial cells in culture: the importance of fields of force in the associated alterations of their cytoskeletal structure’,Exp. Cell Res.,219, pp. 427–441

    Article  Google Scholar 

  • Toma, C. D., Ashkar, S., Gray, M. L., Schaffer, J. L., andGerstenfeld, L. C. (1997): ‘Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts’,J. Bone Miner. Res.,12, pp. 1626–1636

    Google Scholar 

  • Turner, C. H., Forwood, M. R., andOtter, M. W. (1994): ‘Mechanotransduction in bone: do bone cells act as sensors of fluid flow?’,FASEB J.,8, pp. 875–878

    Google Scholar 

  • Turner, C. H., Owan, I., andTakano, Y. (1995): ‘Mechanotransduction in bone: role of strain rate’,Am. J. Physiol.,269, pp. E438-E442

    Google Scholar 

  • Turner, C. H., Takano, Y., Owan, I., andMurrell, G. A. (1996): ‘Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats’,Am. J. Physiol.,270, pp. E634-E639

    Google Scholar 

  • Uematsu, M., Ohara, Y., Navas, J. P., Nishida, K., Murphy, T. J., Alexander, R. W., Nerem, R. M., andHarrison, D. G. (1995): ‘Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress’,Am. J. Physiol.,269, pp. C1371-C1378

    Google Scholar 

  • Wadhwa, S., Godwin, S. L., Peterson, D. R., Epstein, M. A., Raisz, L. G., andPilbeam, C. C. (2002): ‘Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway’,J. Bone Miner. Res.,17, pp. 266–274

    Google Scholar 

  • Walker, L. M., Holm, A., Cooling, L., Maxwell, L., Oberg, A., Sundqvist, T., andEl Haj, A. J. (1999): ‘Mechanical manipulation of bone and cartilage cells with ‘optical tweezers’’,FEBS Lett.,459, pp. 39–42

    Article  Google Scholar 

  • Walker, L. M., Publicover, S. J., Preston, M. R., Said Ahmed, M. A., andEl Haj, A. J. (2000): ‘Calcium-channel activation and matrix protein upregulation in bone cells in response to mechanical strain’,J. Cell Biochem.,79, pp. 648–661

    Article  Google Scholar 

  • Wang, N., Butler, J. P., andIngber, D. E. 1993, ‘Mechanotransduction across the cell surface and through the cytoskeleton’,Science,260, pp. 1124–1127

    Google Scholar 

  • Weinbaum, S., Cowin, S. C., andZeng, Y. (1994): ‘A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses’,J. Biomech.,27, pp. 339–360

    Article  Google Scholar 

  • Weinbaum, S., Guo, P., andYou, L. (2001): ‘A new view of mechanotransduction and strain amplification in cells with microvilli and cell processes’,Biorheology,38, pp. 119–142

    Google Scholar 

  • Westbroek, I., Ajubi, N. E., Alblas, M. J., Semeins, C. M., Klein-Nulend, J., Burger, E. H., andNijweide, P. J. (2000): ‘Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow’,Biochem. Biophys. Res. Commun.,268, pp. 414–419

    Article  Google Scholar 

  • Yasui, N., Sato, M., Ochi, T., Kimura, T., Kawahata, H., Kitamura, Y., andNomura, S. (1997): ‘Three modes of ossification during distraction osteogenesis in the rat’,J. Bone Joint Surg. Br.,79, pp. 824–830

    Article  Google Scholar 

  • You, J., Yellowley, C. E., Donahue, H. J., Zhang, Y., Chen, Q., andJacobs, C. R. (2000): ‘Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow’,J. Biomech. Eng.,122, pp. 387–393

    Article  Google Scholar 

  • Zaman, G., Pitsillides, A. A., Rawlinson, S. C., Suswillo, R. F., Mosley, J. R., Cheng, M. Z., Platts, L. A., Hukkanen, M., Polak, J. M., andLanyon, L. E. (1999): ‘Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes’,J. Bone Miner. Res.,14, pp. 1123–1131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mullender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullender, M., El Haj, A.J., Yang, Y. et al. Mechanotransduction of bone cellsin vitro: Mechanobiology of bone tissue. Med. Biol. Eng. Comput. 42, 14–21 (2004). https://doi.org/10.1007/BF02351006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02351006

Keywords

Navigation