Skip to main content
Log in

Adsorption of UO2 2+ on natural composite materials

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The prediction of the adsorption behavior of natural composite materials was studied by a single mineral approach. The adsorption of U(VI) on single minerals such as goethite, hematite, kaolinite and quartz was fully modeled using the diffuse-layer model in various experimental conditions. A quasi-thermodynamic database of surface complexation constants for single minerals was established in a consistent manner. In a preliminary work, the adsorption of a synthetic mixture of goethite and kaolinite was simulated using the model established for a single mineral system. The competitive adsorption of U(VI) between goethite and kaolinite can be well explained by the model. The adsorption behavior of natural composite materials taken from the Koongarra uranium deposit (Australia) was predicted in a similar manner. In comparison with the synthetic mixture, the prediction was less successful in the acidic pH range. However, the model predicted well the adsorption behavior in the neutral to alkaline pH range. Furthermore, the model reasonably explained the role of iron oxide minerals in the adsorption of U(VI) on natural composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. A. Chapman, I. G. McKinley, M. D. Hill, The Geological Disposal of Nuclear Waste, John Wiley & Sons, Inc, Chichester, 1987.

    Google Scholar 

  2. D. Langmuir, Aqueous Environmental Geochemistry, Prentice-Hall, Inc., Upper Sadle River, 1997.

    Google Scholar 

  3. G. H. Bolt, W. H. van Riemsdijk, Surface Chemical Processes in Soil, in: Aquatic Surface Chemistry — Chemical Processes at the Particle-Water Interface,W. Stumn (Ed.), John Wiley and Sons, Inc., New York, 1987.

    Google Scholar 

  4. T. E. Payne, T. D. Waite, Radiochim. Acta, 52/53 (1991) 487.

    Google Scholar 

  5. F. Wang, J. Chen, Environ. Sci. Technol., 31 (1997) 448.

    CAS  Google Scholar 

  6. X. Wen, Q. Du, H. Tang, Eviron. Sci. Technol., 32 (1998) 870.

    CAS  Google Scholar 

  7. V. S. Tripathi, M. D. Siegel, Z. S. Kooner, Measurement of Metal Adsorption in Oxide-Clay Mixtures: “Competitive-Additivity” among Mixture Components, SAND-91-1889C, USDOE, Washington D.C., 1991.

  8. J. A. Davis, D. B. Kent, Surface Complexation Modeling in Aqueous Geochemistry, Vol. 23, in Mineral-Water Interface Geochemistry,M. F. Hochella, A. F. White (Eds), Mineralogical Society of America, Washington, D.C., 1990.

    Google Scholar 

  9. J. Jung, Y. H. Cho, P. S. Hahn, Bull. Korean Chem. Soc., 19 (1998) 324.

    CAS  Google Scholar 

  10. J. Jung, J. K. Lee, Y. H. Cho, D. K. Keum, P. S. Hahn, J. Korean Nucl. Soc., 31 (1999).

  11. C. P. Huang, W. Stumn, J. Colloid Interface Sci., 43 (1973) 409.

    Article  CAS  Google Scholar 

  12. D. A. Dzombak, M. M. Morel, Surface Complexation Modeling: Hydrous Ferric Oxide, John Wiley and Sons, Inc., New York, 1990.

    Google Scholar 

  13. P. W. Schindler, W. Stumn, The Surface Chemistry of oxides, hydroxides, and oxide minerals, in: Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface,W. Stumn (Ed.), John Wiley and Sons, Inc., New York, 1987.

    Google Scholar 

  14. J. A. Davis, R. O. James, J. O. Leckie, J. Colloid Interface Sci., 63 (1978) 480.

    CAS  Google Scholar 

  15. M. C. Duff, C. Amrhein, Soil Sci. Am. J., 60 (1996) 1393.

    CAS  Google Scholar 

  16. R. Edis, L. Cao, J. Cashion, D. Klessa, A. J. Koppi, T. Murakami, T. Nightingale, T. Payne, A. Snelling, N. Yanase, Chemistry and Mineralogy of Rocks and Soils, Vol. 8, in Alligator Rivers Analogue Project,P. Duerden (Ed.), Australian Nuclear Science and Technology Organization, Sydney, 1992.

    Google Scholar 

  17. T. E. Payne, J. A. Davies, T. D. Waite, Radiochim. Acta, 74 (1996) 239.

    CAS  Google Scholar 

  18. A. L. Herbelin, J. C. Westall, FITRQL — A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data, Version 3.2, Oregon State University, Corvallis, 1996.

    Google Scholar 

  19. M. R. Chandratillake, G. W. A. Newton, V. J. Robinson, CHEMVAL Project-Comparison of Thermodynamic Data Bases used in Geochemical Modeling, EUR-11891, Commission of European Communities, Luxembourg, 1988.

    Google Scholar 

  20. I. Grenthe, J. Fuger, R. J. M. Konings, R. J. Lemire, A. B. Muller, C. Nguyen-Trang Cregu, H. Wanner, Chemical Thermodynamics of Uranium, Vol. 1, in: Chemical Thermodynamics,H. Wanner andI. Forest (Eds), North-Holland, Amsterdam, 1992.

    Google Scholar 

  21. D. A. Sverjensky, N. Sahai, Geochim. Cosmochim. Acta, 60 (1996) 3773.

    Article  CAS  Google Scholar 

  22. T. D. Waite, J. A. Davis, T. E. Payne, G. A. Waychunas, N. Xu, Radiochim. Acta, 24 (1994) 5465.

    Google Scholar 

  23. C. H. Ho, N. H. Miller, J. Colloid Interface Sci., 110 (1986) 165.

    Article  CAS  Google Scholar 

  24. C. D. Hsi, D. Langmuir, Geochim. Cosmochim. Acta, 49 (1985) 1931.

    CAS  Google Scholar 

  25. T. E. Payne, J. A. Davies, T. D. Waite, Radiochim. Acta, 66/67 (1994) 301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J., Hyun, S.P., Lee, J.K. et al. Adsorption of UO2 2+ on natural composite materials. J Radioanal Nucl Chem 242, 405–412 (1999). https://doi.org/10.1007/BF02345570

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345570

Keywords

Navigation