Skip to main content
Log in

How mitochondrial damage affects cell function

  • Review
  • Published:
Journal of Biomedical Science

Abstract

The pathophysiology of mitochondrial DNA (mtDNA) diseases is caused by increased cell death and dysfunction due to the accumulation of mutations to mtDNA. While the disruption of oxidative phosphorylation is central to mtDNA diseases, many other factors, such as Ca2+ dyshomeostasis, increased oxidative stress and defective turnover of mitochondrial proteins, may also contribute. The relative importance of these processes in causing cell dysfunction and death is uncertain. It is also unclear whether these damaging processes lead to the disease phenotype through affecting cell function, increasing cell death or a combination of both. These uncertainties limit our understanding of mtDNA disease pathophysiology and our ability to develop rational therapies. Here, we outline how the accumulation of mtDNA mutations can lead to cell dysfunction by altering oxidative phosphorylation, Ca2+ homeostasis, oxidative stress and protein turnover and discuss how these processes affect cell function and susceptibility to cell death. A better understanding of these processes will eventually clarify why particular mtDNA mutations cause defined syndromes in some cases but not in others and why the same mutation can lead to different phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66;2001.

    Article  PubMed  Google Scholar 

  2. Albin RL, Greenamyre JT. Alternative excitotoxic hypotheses. Neurology 42:733–738;1992.

    PubMed  Google Scholar 

  3. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature 290:457–465;1981.

    Article  PubMed  Google Scholar 

  4. Asoh S, Mori T, Hayashi J, Ohta S. Expression of the apoptosis-mediator Fas is enhanced by dysfunctional mitochondria. J Biochem (Tokyo) 120:600–607;1996.

    Google Scholar 

  5. Azzi A, Montecucco C, Richter C. The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes. Biochem Biophys Res Commun 65:597–603;1975.

    Article  PubMed  Google Scholar 

  6. Baker SK, Tarnopolsky MA, Bonen A. Expression of MCT1 and MCT4 in a patient with mitochondrial myopathy. Muscle Nerve 24:394–398;2001.

    Article  PubMed  Google Scholar 

  7. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol 271:C1424-C1437;1996.

    PubMed  Google Scholar 

  8. Bernardi P, Petronilli V, Di Lisa F, Forte M. A mitochondrial perspective on cell death. Trends Biochem Sci 26:112–117;2001.

    Article  PubMed  Google Scholar 

  9. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21;2000.

    Article  PubMed  Google Scholar 

  10. Boulet L, Karpati G, Shoubridge EA. Distribution and threshold expression of the tRNA-(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51:1187–1200;1992.

    PubMed  Google Scholar 

  11. Brini M, Pinton P, King MP, Davidson M, Schon EA, Rizzuto R. A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nat Med 5:951–954;1999.

    Article  PubMed  Google Scholar 

  12. Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P, De Michele G, Filla A, Cocozza S, Marconi R, Durr A, Fontaine B, Ballabio A. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983;1998.

    Article  PubMed  Google Scholar 

  13. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605;1979.

    PubMed  Google Scholar 

  14. Chen Z, Siu B, Ho YS, Vincent R, Chua CC, Hamdy RC, Chua BH. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 30:2281–2289;1998.

    Article  PubMed  Google Scholar 

  15. Chernyak BV, Bernardi P. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites. Eur J Biochem 238:623–630;1996.

    Google Scholar 

  16. Chinnery PF, Thorburn DR, Samuels DC, White SL, Dahl HM, Turnbull DM, Lightowlers RN, Howell N. The inheritance of mitochondrial DNA heteroplasmy: Random drift, selection or both? Trends Genet 16:500–505;2000.

    Article  PubMed  Google Scholar 

  17. Cottrell DA, Ince PG, Blakely EL, Johnson MA, Chinnery PF, Hanna M, Turnbull DM. Neuropathological and histochemical changes in a multiple mitochondrial DNA deletion disorder. J Neuropathol Exp Neurol 59:621–627;2000.

    PubMed  Google Scholar 

  18. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249;1999.

    Article  PubMed  Google Scholar 

  19. Dawson G, Cho S. Batten's disease: Clues to neuronal protein catabolism in lysosomes. J Neurosci Res 60:133–140;2000.

    Article  PubMed  Google Scholar 

  20. Delgado-Escueta AV, Ganesh S, Yamakawa K. Advances in the genetics of progressive myoclonus epilepsy. Am J Med Genet 106:129–138;2001.

    Article  PubMed  Google Scholar 

  21. Demaurex N, Grinstein S. Na+/H+ antiport: Modulation by ATP and role in cell volume regulation. J Exp Biol 196:389–404;1994.

    PubMed  Google Scholar 

  22. Dey R, Moraes CT. Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem 275:7087–7094;2000.

    Google Scholar 

  23. Di Giovanni S, Mirabella M, Papacci M, Odoardi F, Silvestri G, Servidei S. Apoptosis and ROS detoxification enzymes correlate with cytochrome c oxidase deficiency in mitochondrial encephalomyopathies. Mol Cell Neurosci 17:696–705;2001.

    Article  PubMed  Google Scholar 

  24. DiMauro S, Hirano M, Schon EA. Mitochondrial encephalomyopathies: Therapeutic approaches. Neurol Sci 21(5 suppl):S901-S908;2000.

    Article  PubMed  Google Scholar 

  25. DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet 106:18–26;2001.

    Article  PubMed  Google Scholar 

  26. Drachev LA, Kondrashin AA, Semenov AY, Skulachev VP. Reconstitution of biological molecular generators of electric current. Transhydrogenase. Eur J Biochem 113:213–217;1980.

    Google Scholar 

  27. Duchen MR. Mitochondria and calcium: From cell signalling to cell death. J Physiol 529:57–68;2000.

    Article  PubMed  Google Scholar 

  28. Elmore SP, Qian T, Grissom SF, Lemasters JJ. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 15:2286–2287;2001.

    PubMed  Google Scholar 

  29. Enriquez JA, Chomyn A, Attardi G. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet 10:47–55;1995.

    PubMed  Google Scholar 

  30. Ezaki J, Wolfe LS, Higuti T, Ishidoh K, Kominami E. Specific delay of degradation of mitochondrial ATP synthase subunit c in late infantile neuronal ceroid lipofuscinosis (Batten disease). J Neurochem 64:733–741;1995.

    PubMed  Google Scholar 

  31. Forsmark P, Aberg F, Norling B, Nordenbrand K, Dallner G, Ernster L. Inhibition of lipid peroxidation by ubiquinol in submitochondrial particles in the absence of vitamin E. FEBS Lett 285:39–43;1991.

    Article  PubMed  Google Scholar 

  32. Geromel V, Kadhom N, Cebalos-Picot I, Ouari O, Polidori A, Munnich A, Rotig A, Rustin P. Superoxide-induced massive apoptosis in cultured skin fibroblasts harboring the neurogenic ataxia retinitis pigmentosa (NARP) mutation in the ATPase-6 gene of the mitochondrial DNA. Hum Mol Genet 10:1221–1228;2001.

    Article  PubMed  Google Scholar 

  33. Goldstone TP, Roos I, Crompton M. Effects of adrenergic agonists and mitochondrial energy state on the Ca2+ transport systems of mitochondria. Biochemistry 26:246–254;1987.

    Article  PubMed  Google Scholar 

  34. Goto Y. Clinical and molecular studies of mitochondrial disease. J Inherit Metab Dis 24:181–188;2001.

    Article  PubMed  Google Scholar 

  35. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K. Mitochondrial calcium transport: Mechanisms and functions. Cell Calcium 28:285–296;2000.

    PubMed  Google Scholar 

  36. Gutteridge JM, Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann NY Acad Sci 899:136–147;2000.

    PubMed  Google Scholar 

  37. Hansford RG, Zorov D. Role of mitochondrial calcium transport in the control of substrate oxidation. Mol Cell Biochem 184:359–369;1998.

    Article  PubMed  Google Scholar 

  38. Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7:1182–1191;2000.

    Article  PubMed  Google Scholar 

  39. Heddi A, Lestienne P, Wallace DC, Stepien G. Mitochondrial DNA expression in mitochondrial myopathies and coordinated expression of nuclear genes involved in ATP production. J Biol Chem 268:12156–12163;1993.

    Google Scholar 

  40. Heddi A, Stepien G, Benke PJ, Wallace DC. Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J Biol Chem 274:22968–22976;1999.

    Google Scholar 

  41. Henneberry RL, Novelli A, Lysko PG. Neurotoxicity at the N-methyl-D-aspartate receptor in energy-compromised neurons. An hypothesis for cell death in aging and disease. Ann NY Acad Sci 568:225–233;1989.

    PubMed  Google Scholar 

  42. Higuchi M, Aggarwal BB, Yeh ET. Activation of CPP32-like protease in tumor necrosis factor-induced apoptosis is dependent on mitochondrial function. J Clin Invest 99:1751–1758;1997.

    PubMed  Google Scholar 

  43. Holtzman E: Lysosomes, ed 1. New York, Plenum, 1989.

    Google Scholar 

  44. Hwang PM, Bunz F, Yu J, Rago C, Chan TA, Murphy MP, Kelso GF, Smith RA, Kinzler KW, Vogelstein B. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 7:1111–1117;2001.

    Article  PubMed  Google Scholar 

  45. Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, Nonaka I, Hayashi JI. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26:176–181;2000.

    Article  PubMed  Google Scholar 

  46. Ishikawa Y, Asuwa N, Ishii T, Masuda S, Kiguchi H, Hirai S, Akashi N, Yonenami K, Fujisawa Y. Severe mitochondrial cardiomyopathy and extra-neuromuscular abnormalities in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS). Pathol Res Pract 191:64–75;1995.

    PubMed  Google Scholar 

  47. Jacobson MD, Burne JF, King MP, Miyashita T, Reed JC, Raff MC. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 361:365–369;1993.

    Article  PubMed  Google Scholar 

  48. James AJ, Sheard PW, Wei Y-H, Murphy MP. Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations: Implications for neurodegenerative and mitochondrial DNA diseases. Eur J Biochem 259:462–469;1999.

    Google Scholar 

  49. James AM, Wei Y-H, Pang C-Y, Murphy MP. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J 318:401–407;1996.

    PubMed  Google Scholar 

  50. Jiang S, Cai J, Wallace DC, Jones DP. Cytochrome c-mediated apoptosis in cells lacking mitochondrial DNA. Signaling pathway involving release and caspase 3 activation is conserved. J Biol Chem 274:29905–29911;1999.

    Google Scholar 

  51. Kalman B, Lublin FD, Alder H. Impairment of central and peripheral myelin in mitochondrial diseases. Mult Scler 2:267–278;1997.

    PubMed  Google Scholar 

  52. Kawai H, Akaike M, Yokoi K, Nishida Y, Kunishige M, Mine H, Saito S. Mitochondrial encephalomyopathy with autosomal dominant inheritance: A clinical and genetic entity of mitochondrial diseases. Muscle Nerve 18:753–760;1995.

    PubMed  Google Scholar 

  53. Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, DiFiglia M. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 20:7268–7278;2000.

    PubMed  Google Scholar 

  54. Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697;1998.

    PubMed  Google Scholar 

  55. Kerrison JB, Howell N, Miller NR, Hirst L, Green WR. Leber hereditary optic neuropathy. Electron microscopy and molecular genetic analysis of a case. Ophthalmology 102:1509–1516;1995.

    PubMed  Google Scholar 

  56. King MP, Koga Y, Davidson M, Schon EA. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNALeu(UUR) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol Cell Biol 12:480–490;1992.

    PubMed  Google Scholar 

  57. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721;2000.

    Google Scholar 

  58. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18;1997.

    PubMed  Google Scholar 

  59. Larsson NG, Tulinius MH, Holme E, Oldfors A, Andersen O, Wahlstrom J, Aasly J. Segregation and manifestations of the mtDNA tRNA-(Lys) A->G(8344) mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet 51:1201–1212;1992.

    PubMed  Google Scholar 

  60. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236;1998.

    Article  PubMed  Google Scholar 

  61. Li H, Wang J, Wilhelmsson H, Hansson A, Thoren P, Duffy J, Rustin P, Larsson NG. Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci USA 97:3467–3472;2000.

    Google Scholar 

  62. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676;1999.

    Article  PubMed  Google Scholar 

  63. Lombes A, Mendell JR, Nakase H, Barohn RJ, Bonilla E, Zeviani M, Yates AJ, Omerza J, Gales TL, Nakahara K, et al. Myoclonic epilepsy and ragged-red fibers with cytochrome oxidase deficiency: Neuropathology, biochemistry, and molecular genetics. Ann Neurol 26:20–33;1989.

    Article  PubMed  Google Scholar 

  64. Luo XP, Pitkänen S, Kassovska-Bratinova S, Robinson BH, Lehotay DC. Excessive formation of hydroxyl radicals and aldehydic lipid perioxidation products in cultured skin fibroblasts from patients with complex I deficiency. J Clin Invest 99:2877–2882;1997.

    PubMed  Google Scholar 

  65. Macmillan-Crow LA, Cruthirds DL. Invited review: Manganese superoxide dismutase in disease. Free Radic Res 34:325–336;2001.

    PubMed  Google Scholar 

  66. Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263;1984.

    Article  PubMed  Google Scholar 

  67. Miller RJ, Murphy SN, Glaum SR. Neuronal Ca2+ channels and their regulation by excitatory amino acids. Ann NY Acad Sci 568:149–158;1989.

    PubMed  Google Scholar 

  68. Mirabella M, Di Giovanni S, Silvestri G, Tonali P, Servidei S. Apoptosis in mitochondrial encephalomyopathies with mitochondrial DNA mutations: A potential pathogenic mechanism. Brain 123:93–104;2000.

    Article  PubMed  Google Scholar 

  69. Mita S, Tokunaga M, Kumamoto T, Uchino M, Nonaka I, Ando M. Mitochondrial DNA mutation and muscle pathology in mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Muscle Nerve Suppl 3:S113-S118;1995.

    Article  Google Scholar 

  70. Mita S, Tokunaga M, Uyama E, Kumamoto T, Uekawa K, Uchino M. Single muscle fiber analysis of myoclonus epilepsy with ragged-red fibers. Muscle Nerve 21:490–497;1998.

    PubMed  Google Scholar 

  71. Monici MC, Toscano A, Girlanda P, Aguennouz M, Musumeci O, Vita G. Apoptosis in metabolic myopathies. Neuroreport 9:2431–2435;1998.

    PubMed  Google Scholar 

  72. Moraes CT. Mitochondrial disorders. Curr Opin Neurol 9:369–374;1996.

    PubMed  Google Scholar 

  73. Moudy AM, Handran SD, Goldberg MP, Ruffin N, Karl I, Kranz-Eble P, DeVivo DC, Rothman SM. Abnormal calcium homeostasis and mitochondrial polarization in a human encephalomyopathy. Proc Natl Acad Sci USA 92:729–733;1995.

    Google Scholar 

  74. Murphy MP. Development of lipophilic cations as therapies for disorders due to mitochondrial dysfunction. Expert Opin Biol Ther 1:753–764;2001.

    Article  PubMed  Google Scholar 

  75. Murphy MP, Packer MA, Scarlett JL, Martin SW, Peroxynitrite: A biologically significant oxidant. Gen Pharmacol 31:179–186;1998.

    PubMed  Google Scholar 

  76. Newman NJ. Leber's hereditary optic neuropathy. New genetic considerations. Arch Neurol 50:540–548;1993.

    PubMed  Google Scholar 

  77. Nixon RA, Cataldo AM, Mathews PM. The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: A review. Neurochem Res 25:1161–1172;2000.

    Article  PubMed  Google Scholar 

  78. Pajic A, Tauer R, Feldmann H, Neupert W, Langer T. Yta10p is required for the ATP-dependent degradation of polypeptides in the inner membrane of mitochondria. FEBS Lett 353:201–206;1994.

    Article  PubMed  Google Scholar 

  79. Palmer DN, Bayliss SL, Westlake VJ. Batten disease and the ATP synthase subunit C turnover pathway. Am J Med Genet 57:260–265;1995.

    PubMed  Google Scholar 

  80. Paul M-F, Tzagoloff A. Mutations inRCA1 andAFG3 inhibit F1-ATPase assembly inSaccharomyces cerevisiae. FEBS Lett 373:66–70;1995.

    PubMed  Google Scholar 

  81. Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: A distinctive clinical syndrome. Ann Neurol 16:481–488;1984.

    PubMed  Google Scholar 

  82. Pitkänen S, Robinson BH. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest 98:345–351;1996.

    PubMed  Google Scholar 

  83. Plum F. What causes infarction in ischemic brain? The Robert Wartenberg lecture. Neurology 33:222–233;1983.

    PubMed  Google Scholar 

  84. Porteous WK, James AM, Sheard PW, Porteous CM, Packer MA, Hyslop SJ, Melton JV, Pang CY, Wei YH, Murphy MP. Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. Eur J Biochem 257:192–201;1998.

    Google Scholar 

  85. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508;2000.

    PubMed  Google Scholar 

  86. Reichmann H. Enzyme activity analyses along ragged-red and normal single muscle fibres. Histochemistry 98:131–134;1992.

    PubMed  Google Scholar 

  87. Reid FM, Vernham GA, Jacobs HT. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Hum Mutat 3:243–247;1994.

    Article  PubMed  Google Scholar 

  88. Scelsi R. Morphometric analysis of skeletal muscle fibres and capillaries in mitochondrial myopathies. Pathol Res Pract 188:607–611;1992.

    PubMed  Google Scholar 

  89. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212;2001.

    PubMed  Google Scholar 

  90. Sciacco M, Fagiolari G, Lamperti C, Messina S, Bazzi P, Napoli L, Chiveri L, Prelle A, Comi GP, Bresolin N, Scarlato G, Moggio M. Lack of apoptosis in mitochondrial encephalomyopathies. Neurology 56:1070–1074;2001.

    PubMed  Google Scholar 

  91. Sevior KB, Hatamochi A, Stewart IA, Bykhovskaya Y, Allen-Powell DR, Fischel-Ghodsian N, Maw MA. Mitochondrial A7445G mutation in two pedigrees with palmoplantar keratoderma and deafness. Am J Med Genet 75:179–185;1998.

    PubMed  Google Scholar 

  92. Siesjö BK, Bengtsson F, Grampp W, Theander S. Calcium, excitotoxins, and neuronal death in the brain. Ann NY Acad Sci 568:234–251;1989.

    PubMed  Google Scholar 

  93. Silva JP, Kohler M, Graff C, Oldfors A, Magnuson MA, Berggren PO, Larsson NG. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet 26:336–340;2000.

    Article  PubMed  Google Scholar 

  94. Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352;2001.

    PubMed  Google Scholar 

  95. Sorensen L, Ekstrand M, Silva JP, Lindqvist E, Xu B, Rustin P, Olson L, Larsson NG. Lateonset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice. J Neurosci 21:8082–8090;2001.

    PubMed  Google Scholar 

  96. Sparaco M, Bonilla E, DiMauro S, Powers JM. Neuropathology of mitochondrial encephalomyopathies due to mitochondrial DNA defects. J Neuropathol Exp Neurol 52:1–10;1993.

    PubMed  Google Scholar 

  97. Tauer R, Mannhaupt G, Schnall R, Pajic A, Langer T, Feldmann H. Yta10p, a member of a novel ATPase family in yeast, is essential for mitochondrial function. FEBS Lett 353:197–200;1994.

    PubMed  Google Scholar 

  98. Terauchi A, Tamagawa K, Morimatsu Y, Kobayashi M, Sano T, Yoda S. An autopsy case of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) with a point mutation of mitochondrial DNA. Brain Dev 18:224–229;1996.

    PubMed  Google Scholar 

  99. Terman A. Garbage catastrophe theory of aging: Imperfect removal of oxidative damage? Redox Rep 6:15–26;2001.

    Article  PubMed  Google Scholar 

  100. Tomkinson B. Tripeptidyl peptidases: Enzymes that count. Trends Biochem Sci 24:355–359;1999.

    Article  PubMed  Google Scholar 

  101. Tzagoloff A, Yue J, Jang J, Paul MF. A new member of a family of ATPases is essential for assembly of the mitochondrial respiratory chain and ATP synthetase complexes inSaccharomyces cerevisiae. J Biol Chem 269:26144–26151;1994.

    Google Scholar 

  102. Wang J, Silva JP, Gustafsson CM, Rustin P, Larsson NG. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci USA 98:4038–4043;2001.

    Google Scholar 

  103. Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, Rustin P, Bruning JC, Kahn CR, Clayton DA, Barsh GS, Thoren P, Larsson NG. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137;1999.

    Article  PubMed  Google Scholar 

  104. Williams AJ, Cole PJ. In vitro stimulation of alveolar macrophage metabolic activity by polystyrene in the absence of phagocytosis. Br J Exp Pathol 62:1–7;1981.

    PubMed  Google Scholar 

  105. Wong A, Cortopassi G. mtDNA mutations confer cellular sensitivity to oxidant stress that is partially rescued by calcium depletion and cyclosporin A. Biochem Biophys Res Commun 239:139–145;1997.

    PubMed  Google Scholar 

  106. Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signalling in sympathetic neurons: An alternative mechanism of death execution. Mol Cell Neurosci 14:180–198;1999.

    Article  PubMed  Google Scholar 

  107. Yasukawa T, Suzuki T, Ishii N, Ohta S, Watanabe K. Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J 20:4794–4802;2001.

    Article  PubMed  Google Scholar 

  108. Zeviani M, Corona P, Nijtmans L, Tiranti V. Nuclear gene defects in mitochondrial disorders. Ital J Neurol Sci 20:401–408;1999.

    PubMed  Google Scholar 

  109. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176;1995.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, A.M., Murphy, M.P. How mitochondrial damage affects cell function. J Biomed Sci 9, 475–487 (2002). https://doi.org/10.1007/BF02254975

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02254975

Key Words

Navigation