Skip to main content
Log in

Nitric oxide synthase in spontaneously hypertensive rats

  • Meeting Report
  • Published:
Journal of Biomedical Science

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bates JN, Baker MT, Guerra R Jr, Harrison DG. Nitric oxide generation from nitroprusside by vascular tissue: Evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem Pharmacol 42:S157-S165;1991.

    Article  PubMed  Google Scholar 

  2. Beasley D. Interleukin-1 and endotoxin activate soluble guanylate cyclase in vascular smooth muscle. Am J Physiol 259:R38-R44;1990.

    PubMed  Google Scholar 

  3. Beasley D, Cohen RA, Levinski NG. Interleukin 1 inhibits contraction of vascular smooth muscle. J Clin Invest 83:331–335;1989.

    PubMed  Google Scholar 

  4. Beasley D, Schwartz JH, Brenner BM. Interleukin-1 induces prolongedL-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells. J Clin Invest 87:602–608;1991.

    PubMed  Google Scholar 

  5. Beulter B. TNF, immunity and inflammatory disease: Lessons of the past decade. J Invest Med 43:227–235;1995.

    Google Scholar 

  6. Boeynaems JM, Pearson JD. P2 purinoceptors on vascular endothelial cells: Physiological significance and transduction mechanisms. Trends Pharmacol Sci 11:34–37;1990.

    Article  PubMed  Google Scholar 

  7. Boulanger C, Schini VB, Moncada S, Vanhoutte PM. Stimulation of cyclic GMP production in cultured endothelial cells of the pig by bradykinin, adenosine diphosphate, calcium ionophore A23187 and nitric oxide. Br J Pharmacol 101:152–156;1990.

    PubMed  Google Scholar 

  8. Bredt DS, Snyder SH. Nitric oxide: A physiologic messenger molecule. Annu Rev Biochem 63:175–195;1994.

    Article  PubMed  Google Scholar 

  9. Busse R, Mulsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle. FEBS Lett 275:87–90;1990.

    Article  PubMed  Google Scholar 

  10. Calver H, Collier J, Vallance P. Nitric oxide and cardiovascular control. Exp Physiol 78:303–326;1993.

    PubMed  Google Scholar 

  11. Clozel M, Kuhn H, Hefti F, Baumgartner HR. Endothelial dysfunction and subendothelial monocyte macrophages in hypertension: Effect of angiotensin converting enzyme inhibition. Hypertension 18:132–141;1991.

    PubMed  Google Scholar 

  12. Culotta E, Koshland DE Jr. NO news is good news. Science 258:1862–1865;1992.

    Google Scholar 

  13. Dananberg J, Sider RS, Grekin RJ. Sustained hypertension induced by orally administered nitro-L-arginine. Hypertension 21:359–363;1993.

    PubMed  Google Scholar 

  14. Diederich D, Yang Z, Buhler FR, Luscher TF. Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway. Am J Physiol 258:H445-H451;1990.

    PubMed  Google Scholar 

  15. Folkow B, Hallback M, Lundgren Y, Weiss L. Background of increased flow resistance and vascular reactivity in spontaneously hypertensive rats. Acta Physiol Scand 80:93–106;1970.

    PubMed  Google Scholar 

  16. Forstermann U, Pollock JS, Schmidt HHHW, Heller M, Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci USA 88:1788–1792;1991.

    PubMed  Google Scholar 

  17. Fozard JR, Part ML. Hemodynamic responses to NG-monomethyl-L-arginine in spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Pharmacol 102:823–826;1991.

    PubMed  Google Scholar 

  18. Furchgott RF, Zawakzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 228:373–376;1980.

    Article  Google Scholar 

  19. Gruetter CA, Gruetter DY, Lyon JE, Kadowitz PJ, Ignarro LJ. Relationship between cyclic guanosine 3′,5′-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: Effects of methylene blue and methemoglobin. J Pharmacol Exp Ther 219:181–186;1981.

    PubMed  Google Scholar 

  20. Hazama F, Amano S, Ozaki T. Pathological changes of cerebral vessel endothelial cells in spontaneously hypertensive rats, with special reference to the role of these cells in the development of hypertensive cerebral lesions. Adv Neurol 20:359–369;1978.

    PubMed  Google Scholar 

  21. Humphries RG, Tomlinson W, O'Connor SE, Left P. Inhibition of collagen- and ADP-induced platelet aggregation by substance P in vivo: Involvement of endothelium-derived relaxing factor. J Cardiovasc Pharmacol 16:292–297;1990.

    PubMed  Google Scholar 

  22. Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 30:535–560;1990.

    PubMed  Google Scholar 

  23. Ignarro LJ, Buga GM, Wood KS, Byrns KS, Chaudhuri G. Endothelium-derived relaxing factor produced and release from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269;1987.

    PubMed  Google Scholar 

  24. Junquero DC, Schini VB, Scott-Burden T, Vanhoutte PM. Enhanced production of nitric oxide in aortae from spontaneously hypertensive rats by interleukin-1β. Am J Hypertens 6:602–610;1993.

    PubMed  Google Scholar 

  25. Junquero DC, Scott-Burden T, Schini VB, Vanhoutte PM. The production of nitric oxide evoked by interleukin-1β in cultured aortic smooth muscle cells from spontaneously hypertensive rats is greater than that from normotensive rats. Gen Hypertens 218:3–5;1992.

    Google Scholar 

  26. Kanagy NL, Pawloski GM, Fink GD. Role of aldosterone in angiotensin II-induced hypertension in rats. Am J Physiol 259:R102-R109;1990.

    PubMed  Google Scholar 

  27. Konishi M, Su C. Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 5:881–886;1983.

    PubMed  Google Scholar 

  28. Lacolley PJ, Lewis SJ, Brody MJ.L-NG-nitroarginine produces an exaggerated hypertension in anesthetized SHR. Eur J Pharmacol 197:239–240;1991.

    Article  PubMed  Google Scholar 

  29. Lee L, Webb RC. Endothelium-dependent relaxation andL-arginine metabolism in genetic hypertension. Hypertension 19:435–441;1992.

    PubMed  Google Scholar 

  30. Lockette W, Otsuka Y, Carretero O. The loss of endothelium dependent vascular relaxation in hypertension. Hypertension 8 (suppl II):II-61–II-66;1986.

    Google Scholar 

  31. Luscher TF, Vanhoutte PM. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8:344–348;1986.

    PubMed  Google Scholar 

  32. Malinski T, Kapturczak M, Dayharsh J, Bohr D. Nitric oxide synthase activity in genetic hypertension. Biochem Biophys Res Commun 194:654–658;1993.

    Article  PubMed  Google Scholar 

  33. Mayhan WG. Impairment of endothelium-dependent dilatation of basilar artery during chronic hypertension. Am J Physiol 259:H1455-H1462;1990.

    PubMed  Google Scholar 

  34. Mayhan WG, Faraci FM, Heistad DD. Responses of cerebral arterioles to adenosine 5′-diphosphate, serotonin, and the thromboxane analogue U-46619 during chronic hypertension. Hypertension 12:556–561;1988.

    PubMed  Google Scholar 

  35. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142;1991.

    PubMed  Google Scholar 

  36. Moore PK, Al-Swayeh OA, Chong NWS, Evans RA, Gilson A.L-Nω-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol 99:408–412;1990.

    PubMed  Google Scholar 

  37. Mourlon-Le Grand MC, Benessiano J, Levy BI. cGMP pathway and mechanical properties of carotid artery wall in WKY rats and SHR: Role of endothelium. Am J Physiol 263:H61-H67;1992.

    PubMed  Google Scholar 

  38. Mulsch A, Busse R. NG-L-Nitro-arginine [N5-imino(nitroamino)methyl-L-ornithine] impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from larginine. Naunyn-Schmiedeberg's Arch Pharmacol 341:143–147;1990.

    Google Scholar 

  39. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064;1992.

    PubMed  Google Scholar 

  40. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biologic activity of endothelium-derived relaxing factor. Nature 327:524–526;1987.

    PubMed  Google Scholar 

  41. Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323:22–27;1990.

    PubMed  Google Scholar 

  42. Papapetropoulos A, Marczin N, Snead MD, Cheng C, Milici A, Catravas JD. Smooth muscle cell responsiveness to nitrovasodilators in hypertensive and normotensive rats. Hypertension 23:476–484;1994.

    PubMed  Google Scholar 

  43. Parker JL, Adams HR. Selective inhibition of endothelium-dependent vasodilator capacity byEscherichia coli endotoxemia. Circ Res 72:539–551;1993.

    PubMed  Google Scholar 

  44. Ralvic B, Burnstock G. Roles of P2 purinoceptors in the cardiovascular system. Circulation 84:1–14;1991.

    PubMed  Google Scholar 

  45. Schi VB, Junquero DC, Scott-Burden T, Vanhoutte PM. Interleukin-1β induces the production of an L-arginine-derived relaxing factor from cultured smooth cells from rat aorta. Biochem Biophys Res Commun 176:114–121;1991.

    Article  PubMed  Google Scholar 

  46. Schini-Kerth VB, Vanhoutte PM. Nitric oxide synthases in vascular cells. Exp Physiol 80:885–905;1995.

    PubMed  Google Scholar 

  47. Schleiffer R, Pernot F, Van-Overloop B, Gairard A. In vivo involvement of endothelium-derived nitric oxide in spontaneously hypertensive rats: effect of NG-nitro-L-arginine methyl ester. J Hypertens 9 (suppl 6):S192-S193;1991.

    Google Scholar 

  48. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redoxactivated forms. Science 251:1898–1901;1992.

    Google Scholar 

  49. Wu CC, Hong HJ, Chou TC, Ding YA, Yen MH. Evidence for inducible nitric oxide synthase in spontaneously hypertensive rats. Biochem Biophys Res Commun 228:459–466;1996.

    Article  PubMed  Google Scholar 

  50. Xiao J, Pang PKT. Does a general alteration in nitric oxide synthesis system occur in spontaneously hypertensive rats? Am J Physiol 266:H272-H278;1994.

    PubMed  Google Scholar 

  51. Xiao J, Pang PKT. Activation of nitric oxide synthesis in vascular smooth muscle cells and macrophages during development in spontaneously hypertensive rats. Am J Hypertens 9:377–384;1996.

    Article  PubMed  Google Scholar 

  52. Yen MH, Liu YC, Hong HJ, Sheu JR, Wu CC. Role of nitric oxide in lipopolysaccharide-induced mortality from spontaneously hypertensive rats. Life Sci 60:1223–1230;1997.

    Article  PubMed  Google Scholar 

  53. Young RH, Ding YA, Lee YM, Yen MH. Cilazapril reverses endothelium-dependent vasodilator response to acetylcholine in mesenteric artery from spontaneously hypertensive rats. Am J Hypertens 8:928–933;1995.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CC., Yen, MH. Nitric oxide synthase in spontaneously hypertensive rats. J Biomed Sci 4, 249–255 (1997). https://doi.org/10.1007/BF02253425

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253425

Keywords

Navigation