Skip to main content
Log in

Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors

  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

In the introductory section an overview is given of the strategies which have been proposed in the search for side-effect free antipsychotics. Special attention is paid to the role of predominant 5HT2 receptor blockade over D2 blockade. Whereas D2 receptor blockade seems to be essential for the treatment of positive symptoms of schizophrenia, it also underlies the induction of extrapyramidal side effects (EPS). Predominant 5HT2 receptor blockade may reduce the EPS liability and can ameliorate negative symptoms of schizophrenia. We further report a nearly complete list of neuroleptics that are on the European market and eight new antipsychotics that recently entered clinical trial, 5HT2 and D2 receptor binding affinity (Ki values) and the rank order in affinity for various neurotransmitter receptor subtypes are also discussed. For the eight new antipsychotics and for six reference compounds the complete receptor binding profile (including 33 radioligand receptor binding and neurotransmitter uptake models) is reported. Furthermore, for a series of 120 compounds the relative affinity for D2 receptors and D3 receptors (a recently cloned new dopamine receptor subtype) is compared. Finally, original findings are reported for the new antipsychotic risperidone and for haloperidol and clozapine on the in vivo occupation of neurotransmitter receptors in various brain areas after systemic treatment of rats or guinea pigs. The receptor occupation by the drugs was measured ex vivo by quantitative receptor autoradiography. The receptor occupancy was related to the motor activity effects of the test compounds (measurements were done in the same animals) and to the ability of the drugs to antagonize various 5HT2 and D2 receptor mediated effects. With risperidone a high degree of central 5HT2 receptor occupation was achieved before other neurotransmitter receptors became occupied. This probably co-underlies the beneficial clinical properties of the drug. Antagonism of the various D2 receptor-mediated effects was achieved at widely varying degrees of D2 receptor occupancy, from just about 10% to more than 70%. For therapeutic application it may be of prime importance to carefully titrate drug dosages. Antipsychotic effects may be achieved at a relatively low degree of D2 receptor occupancy at which motor disturbances are still minimal. With drugs such as risperidone that produce shallow log dose-effect curves, differentiation between the various D2 receptor mediated effects may be made more easily, allowing EPS-free maintenance therapy of schizophrenic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ålander T, Anden N-E, Grabowska-Anden M (1980) Metoclopramide and sulpiride as selective blocking agents of pre- and postsynaptic dopamine receptors. Naunyn-Schmiedeberg's Arch Pharmacol 312:145–150

    Article  Google Scholar 

  • Amedro M-J, Couquiaud F. (1986) Evaluation of the effectiveness of tiapride in psychotic anxiety (using the Max Hamilton scale). Semin-Hop 62:981–984

    Google Scholar 

  • Ansoms C, De Backer-Dierick G, Vereecken JLTM (1977) Sleep disorders in patients with severe mental depression: double-blind placebo-controlled evaluation of the value of pipamperone (Dipiperon®). Acta Psychiatr Scand 55:116–122

    PubMed  Google Scholar 

  • Axelsson R, Nilsson A, Christensson E, Björk A (1991) Effects of amperozide in schizophrenia. Psychopharmacology 104:287–292

    Article  PubMed  Google Scholar 

  • Balsara JJ, Jadhav JH, Chandorkar AG (1979) Effect of drugs influencing central serotonergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology 62:67–69

    Article  PubMed  Google Scholar 

  • Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N (1990) 5HT2 Antagonist ritanserin in neuroleptic-induced Parkinsonism: a double-blind comparison with orphenadrine and placebo. Clin Neuropharmacol 13:500–506

    PubMed  Google Scholar 

  • Bjerkenstedt L (1989) Melperone in the treatment of schizophrenia. Acta Psychiatr Scand Suppl 352:35–39

    PubMed  Google Scholar 

  • Borison RL, Sinha D, Haverstock S, McLarnon MC, Diamond BI (1989) Efficacy and safety of tiospirone vs. haloperidol and thioridazine in a double-blind, placebo-controlled trial. Psychopharmacol Bull 25:190–193

    PubMed  Google Scholar 

  • Bouthenet ML, Martres MP, Salès N, Schwartz JCh (1987) A detailed mapping of dopamine D-2 receptors in rat central nervous system by autoradiography with [125I]iodosulpride. Neuroscience 20:117–155

    Article  PubMed  Google Scholar 

  • Breier A, Wolkowitz OM, Doran AR, Roy A, Boronow J, Hommer DW, Pickar D (1987) Neuroleptic responsivity of negative and positive symptoms in schizophrenia. Am J Psychiatry 144:1549–1555

    PubMed  Google Scholar 

  • Brünning G, Kaulen P, Baumgarten G (1987) Quantitative autoradiographic localization of α2-antagonist binding sites in rat brain using [3H]idazoxan. Neurosci Lett 83:333–337

    Article  PubMed  Google Scholar 

  • Casey DE (1989) Clozapine: neuroleptic-induced EPS and tardive dyskinesia. Psychopharmacology 99:S47-S53

    Article  PubMed  Google Scholar 

  • Christensen I, Geismar L, Kirkegaard A, Kirkegaard G (1986) Additional studies on side effects of melperone in long-term therapy for 1–20 years in psychiatric patients. Arzneimittelforschung 36:855–860

    PubMed  Google Scholar 

  • Christensson E, Björk A (1990) Amperozide: a new pharmacological approach in the treatment of schizophrenia. Pharmacol Toxicol Suppl 1:5–7

    Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK, Zhuo Q-Y, Van Tol HHM (1991) Molecular biology of the dopamine receptors. Eur J Pharmacol 207:277–286

    Article  PubMed  Google Scholar 

  • Claus A, Bollen J, De Cuyper H, Eneman M, Malfroid M, Peuskens J, Heylen S (1992) Risperidone versus haloperidol in the treatment of chronic schizophrenic in patients: a multicentre double-blind comparative study. Acta Psychiatr Scand 85:295–305

    PubMed  Google Scholar 

  • Crow TJ, Deakin JFW, Longden A (1977) The nucleus accumbens-possible site of antipsychotic action of neuroleptic drugs? Psychol Med 7:213–221

    PubMed  Google Scholar 

  • Darmani NA, Martin BR, Pandey U, Glennon RA (1990) Do functional relationships exist between 5-HT1A and 5-HT2 receptors? Pharmacol Biochem Behav 36:901–906

    Article  PubMed  Google Scholar 

  • Deberdt R (1976) Pipamperone (Dipiperon) in the treatment of behaviour disorders. A large-scale multicentre evaluation. Acta Psychiatr Belg 76:157–166

    PubMed  Google Scholar 

  • Den Boer JA, Verhoeven WMA, Westenberg GM (1987) Remoxipride, a novel atypical neuroleptic, in the treatment of schizophrenioa. Psychopharmacol Bull 23:206–211

    PubMed  Google Scholar 

  • Den Boer JA, Ravelli DP, Huisman J, Ohrvik J, Verhoeven WMA, Westenberg HGM (1990) Double blind comparative study of remoxipride and haloperidol in acute schizophrenic patients. Psychopharmacology 102:76–84

    Article  PubMed  Google Scholar 

  • De Paulis T, Kumar Y, Johansson L, Ramsby S, Hall H, Sallemark M, Angeby-Moller K, Ogren SO (1986) Potential neuroleptic agents. 4. Chemistry, behavioral pharmacology, and inhibition of [3H]spiperone binding of 3,5-disubstituted N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxysalicylamines. J Med Chem 29:61–69

    Article  PubMed  Google Scholar 

  • De Veaugh-Geiss J, McBain S, Cooksey P, Bell JM (1991) The effects of a novel 5-HT3 antagonist, ondansetron, in schizophrenia: results from uncontrolled trials. In: Meltzer HY (ed) Novel antipsychotic medication. Raven Press, New York

    Google Scholar 

  • Farde L, Wiesel FA, Jansson P, Uppfeldt G, Wahlen A, Sevall G (1988) An open trial of raclopride in acute schizophrenia. Confirmation of D2-dopamine receptor occupancy by PET. Psychopharmacology 94:1–7

    Article  PubMed  Google Scholar 

  • Fargin A, Raymond JR, Regan JW, Cotecchia S, Lefkowitz RJ, Caron MG (1989) Effector coupling mechanisms of the cloned 5-HT1A receptor. J Biol Chem 264:14848–14852

    PubMed  Google Scholar 

  • Finney DJ (1962) Probit analysis. Cambridge University Press

  • Gelders YG, Heylen SLE, Vanden Bussche G, Reyntjens AJM, Janssen PAJ (1990) Pilot clinical investigation of risperidone in the treatment of psychotic patients. Pharmacopsychiatry 23:206–211

    PubMed  Google Scholar 

  • Gerlach J, Casey DE (1990) Remoxipride, a new selective D2 antagonist, and haloperidol in cebus monkeys. Prog Neuropsychopharmacol Biol Psychiatry 14:103–112

    Article  PubMed  Google Scholar 

  • Gerlach J (1991) New antipsychotics: classification, efficacy, and adverse effects. Schizophr Bull 17:289–309

    PubMed  Google Scholar 

  • Grandy DK, Zhang Y, Bouvier C, Zhou Q-Y, Johnson RA, Allen L, Buck K, Bunzow JR, Salon J, Civelli O (1991) Multiple human D5 dopamine receptor genes: a functional receptor and two pseudogenes. Physiol Pharmacol Phys 88:9175–9179

    Google Scholar 

  • Haase HJ (1954) Über Vorkommen und Deutung des psychomotorischen Parkinsonsyndroms bei Megaphen- bzw. Largactil-Dauerbehandlung. Nervenartzt 25:486

    Google Scholar 

  • Haase HJ (1978) The purely neuroleptic effects and its relation to the “neuroleptic threshold”. Acta Psychiatr Belg 78:19–36

    PubMed  Google Scholar 

  • Haegeman J, Duyck F (1978) A retrospective evaluation of pipamperone (Dipiperon) in the treatment of behavioural deviations in severely mentally handicapped. Acta Psychiatr Belg 78:392–398

    PubMed  Google Scholar 

  • Hicks PB (1990) The effect of serotonergic agents on haloperidol-induced catalepsy. Life Sci 47:1609–1615

    Article  PubMed  Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Awouters F, Schellekens KHL, Megens AAHP, Meert TF (1988) Pharmacology of risperidone (R 64 766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244:685–693

    PubMed  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. Arch Gen Psychiatry 45:789–796

    PubMed  Google Scholar 

  • Largent BL, Wikström H, Gundlach AL, Snyder SH (1987) Structural determinants of σ receptor affinity. Mol Pharmacol 32:772–784

    PubMed  Google Scholar 

  • Largent BL, Wikström H, Snowman AM, Snyder SH (1988) Novel antipsychotic drugs share high affinity for σ receptors. Eur J Pharmacol 155:345–347

    Article  PubMed  Google Scholar 

  • Lesch K-P (1991) 5-HT1A receptor responsivity in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry 15:723–733

    Article  PubMed  Google Scholar 

  • Leysen JE (1989) Use of 5-HT receptor agonists and antagonists for the characterization of their respective receptor sites. Neuromethods 12:299–350

    Google Scholar 

  • Leysen JE (1990) Gaps and peculiarities in 5-HT2 receptor studies. Neuropsychopharmacology 3:361–369

    PubMed  Google Scholar 

  • Leysen JE, Niemegeers CJE (1985) Neuroleptics. In: Lajtha A (ed) Handbook of neurochemistry. Plenum pp 331–361

  • Leysen JE, Niemegeers CJE, Tollenaere JP, Laduron PM (1978) Serotonergic component of neuroleptic receptors. Nature 272:168–171

    Article  PubMed  Google Scholar 

  • Leysen JE, Gommeren W, Eens A, de Chaffoy de Courcelles D, Stoof JC, Janssen PAJ (1988) Biochemical profile of risperidone, a new antipsychotic. J Pharmacol Exp Ther 247:661–670

    Google Scholar 

  • Leysen JE, Janssen PMF, Gommeren W, Wynants J, Pauwels PJ, Janssen PAJ (1992) In vitro and in vivo receptor binding and effects on monoamine turnover in rat brain regions of the novel antipsychotics risperidone and ocaperidone. Mol Pharmacol 41:494–508

    PubMed  Google Scholar 

  • Magnusson O, Fowler CJ, Mohringe B, Wijkström A, Ögren S-O (1988) Comparison of the effects of haloperidol, remoxipride and raclopride on “pre”-and postsynaptic dopamine receptors in the rat brain. Naunyn-Schmiedeberg's Arch Pharmacol 337:379–384

    Article  Google Scholar 

  • Maj J, Mogilnicka E, Przewlocka B (1975) Antagonistic effect of cyproheptadine on neuroleptic-induced catalepsy. Pharmacol Biochem Behav 3:25–27

    Article  PubMed  Google Scholar 

  • Meert TF, Janssen PAJ (1991) Ritanserin, a new therapeutic approach for drug abuse. Part 1: Effects on alcohol. Drug Dev Res 24:235–249

    Article  Google Scholar 

  • Meert TF, Janssen PAJ (1992a) Ritanserin, a new therapeutic approach for drug abuse. Part 2: Effects on cocaine. Drug Dev Res 25:39–53

    Article  Google Scholar 

  • Meert TF, Janssen PAJ (1992b) Ritanserin, a new therapeutic approach for drug abuse. Part 3 effects on fentanyl and sucrose. Drug Dev Res 25:55–66

    Article  Google Scholar 

  • Megens AAHP, Voeten J, Rombouts J, Meert ThF, Niemegeers CJE (1987) Behavioral activity of rats measured by a new method based on the piezoelectric principle. Psychopharmacology 93:382–388

    Article  PubMed  Google Scholar 

  • Megens AAHP, Awouters FHL, Niemegeers CJE (1988) Differential effects of the new antipsychotic risperidone on large and small motor movements in rats: a comparison with haloperidol. Psychopharmacology 95:493–496

    Article  PubMed  Google Scholar 

  • Megens AAHP, Awouters FHL, Niemegeers CJE (1989) Interaction of haloperidol and risperidone (R 64 766) with amphetamine-induced motility changes in rats. Drug Dev Res 23–33

  • Megens AAHP, Niemegeers CJE, Awouters FHL (1992a) Behavioral disinhibition and depression in amphetaminized rats: a comparison of risperidone, ocaperidone and haloperidol. J Pharmacol Exp Ther 260:160–167

    PubMed  Google Scholar 

  • Megens AAHP, Niemegeers CJE, Awouters FHL (1992b) Antipsychotic profile and side-effect liability of haloperidol, risperidone and ocaperidone as predicted from their differential interaction with amphetamine in rats. Drug Dev Res 26:129–145

    Article  Google Scholar 

  • Meltzer HY, Nash JF (1991) Effects of antipsychotic drugs on serotonin receptors. Pharmacol Rev 43:587–604

    PubMed  Google Scholar 

  • Meltzer HY, Matsubara S, Lee J-C (1989a) The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 25:390–392

    PubMed  Google Scholar 

  • Meltzer HY, Matsubara S, Lee J-C (1989b) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251:238–246

    PubMed  Google Scholar 

  • Mertens C (1991) Long-term treatment of chronic schizophrenic patients with risperidone. In: Kane JM (ed) Risperidone major progress in antipsychotic treatment. Oxford Clinical Communications, Oxford, pp 44–48

    Google Scholar 

  • Mesotten F, Suy E, Pietguin M, Burton P, Heylen S, Gelders Y (1989) Therapeutic effect and safety of increasing dose of risperidone (R 64 766) in psychotic patients. Psychopharmacology 99:445–449

    Article  PubMed  Google Scholar 

  • Moore NC, Meyendorff E, Yeragani V, Lewitt PA, Gershon S (1987) Tiaspirone in schizophrenia. J Clin Psychopharmacol 7:98–101

    PubMed  Google Scholar 

  • Nemeroff CB, Cain ST (1985) Neurotensin-dopamine interactions in the CNS. TIPS 6:201–205

    Google Scholar 

  • Nilsson JLG, Carlsson A (1982) Dopamine-receptor agonist with apparent selectivity for autoreceptors: A new principle for antipsychotic action? TIPS 3:322–325

    Google Scholar 

  • Östreicher EG, Pinto GF (1987) A microcomputer program for fitting enzyme inhibition rate equations. Comput Biol Med 17:53–68

    Article  PubMed  Google Scholar 

  • Palacios JM, Hoyer D, Cortés R (1987) α1-Adrenoceptors in the mammalian brain: similar pharmacology but different distribution in rodents and primates. Brain Res 419:65–75

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson Ch (1986) The rat brain in stereotoxic coördinates, 2nd edn. Academic Press, Sidney

    Google Scholar 

  • Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230

    Article  PubMed  Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249

    Article  PubMed  Google Scholar 

  • Peuskens J (1990) Risperidone, a new approach in the treatment of schizophrenia. In: Stefanis CN, Rabavilas AD, Soldatos CR (eds) Psychiatry: a world perspective. Exerpta Medica, Amsterdam, pp 184–195

    Google Scholar 

  • Pharmacia LEO Therapeutics AB (1990) Amperozide: the pharmacological profile of a novel antipsychotic agent. Pharmacol Toxicol Suppl 1:3–51

    Google Scholar 

  • Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, Su T-P, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. TIPS 13:85–86

    PubMed  Google Scholar 

  • Reyntjens A, Gelders YG, Hoppenbrouwers M-LJA, Vanden Bussche G (1986) Thymostenic effects of ritanserin (R 55 667), a centrally acting serotonin-S2 receptor blocker. Drug Dev Res 8:205–211

    Article  Google Scholar 

  • Richelson E (1984) Neuroleptic affinities for human brain receptors and their use in predicting adverse effects. J Clin Psychiatry 45:331–336

    PubMed  Google Scholar 

  • Saller CF, Czupryna MJ, Salama AI (1990) 5-HT2 Receptor blockade by ICI 169,369 and other 5-HT2 antagonists modulates the effects of D-2 dopamine receptor blockade. J Pharmacol Exp Ther 253:1162–1170

    PubMed  Google Scholar 

  • Schenk JO, Morocco MT, Ziemba VA (1991) Interactions between the argininyl moieties of neurotensin and the catechol protons of dopamine. J Neurochem 57:1787–1795

    PubMed  Google Scholar 

  • Schotte A, Janssen PFM, Megens AAHP, Leysen JE Receptor occupancy by risperidone and ocaperidone in the rat brain, measured ex vivo by quantitative autoradiography. Janssen Pharmaceutica Preclinical Report, R 64 766/36 and R 79 598/15, March 1992

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32:229–313

    PubMed  Google Scholar 

  • Snyder SH, Greenberg D, Yamamura HI (1974) Antischizophrenic drugs: affinity for muscarinic cholinergic receptor sites in the brain predicts extrapyramidal effects. J Psychiatr Res 11:91–95

    Article  PubMed  Google Scholar 

  • Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–150

    Article  PubMed  Google Scholar 

  • Sokoloff P, Martres M-P, Giros B, Bouthenet M-L, Schwartz J-C (1992) The third dopamine receptor (D3) as a novel target for antipsychotics. Biochem Pharmacol 43:659–666

    Article  PubMed  Google Scholar 

  • Stevens JR (1973) An anatomy of schizophrenia. Arch Gen Psychiatry 29:177–189

    PubMed  Google Scholar 

  • Svendsen O, Arnt F, Boeck V, Bogeso KP, Christensen AV, Hyttel J, Larsen J-J (1986) The neuropharmacological profile of tefludazine, a potential antipsychotic drug with dopamine and serotonin receptor antagonistic effects. Drug Dev Res 7:35–47

    Article  Google Scholar 

  • Squelart P, Soravia (1977) Pipamperone (Dipiperon), a useful sedative neuroleptic drug in troublesome chronic psychotic patients. Acta Psychiatr Belg 77:284–293

    PubMed  Google Scholar 

  • Tiberi M, Jarvie KR, Silvia C, Falardeau P, Gingrigh JA, Godinot N, Bertrand L, Yang-Feng TL, Fremeau RT, Caron MG (1991) Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Neurobiology 88:7491–7495

    Google Scholar 

  • Uchida D, Honda F, Otsuka M, Satoh Y, Mori J, Ono T, Hitomi M (1979) Pharmacological study of [2-chloro-11-(2-dimethyl-aminoethoxy)dibenzo-[b,f]thiepine] (zotepine), a new neuroleptic drug. Eur J Pharmacol 129:123–130

    Google Scholar 

  • Van Hemert JCJ (1975) Pipamperone (Dipiperon, R 3345) in troublesome mental retardates. A double-blind, placebo-controlled cross-over study with long-term follow-up. Acta Psychiatr Scand 52:237–245

    PubMed  Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan H-C, Sunahara RK, Seeman P, Niznik HB, Civelli O (1990) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    Google Scholar 

  • Van Wielinck PS, Leysen JE (1983) Choice of neuroleptics based on in vitro pharmacology. J Drug Res 8:1984–1997

    Google Scholar 

  • Wadworth AN, Heel RC (1990) Remoxipride: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in schizophrenia. Drugs 40:863–879

    PubMed  Google Scholar 

  • Wilk S, Watson E, Stanley ME (1975) Differential sensitivity of two dopaminergic structures in rat brain to haloperidol and to clozapine. J Pharmacol Exp Ther 195:265–270

    PubMed  Google Scholar 

  • Yamawaki S (1987) Profiles of clinical efficacy and pharmacological action of zotepine. Pharmacopsychiatry 20:4–7

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leysen, J.E., Janssen, P.M.F., Schotte, A. et al. Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors. Psychopharmacology 112 (Suppl 1), S40–S54 (1993). https://doi.org/10.1007/BF02245006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245006

Key words

Navigation