Skip to main content
Log in

On the statistical mechanics approach in the random matrix theory: Integrated density of states

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the ensemble of random symmetricn×n matrices specified by an orthogonal invariant probability distribution. We treat this distribution as a Gibbs measure of a mean-field-type model. This allows us to show that the normalized eigenvalue counting function of this ensemble converges in probability to a nonrandom limit asn→∞ and that this limiting distribution is the solution of a certain self-consistent equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wigner, Statistical properties of real symmetric matrices with many dimensions,Can. Math. Proc. 1957:174–198.

  2. M. L. Mehta,Random Matrices (Academic Press, New York, 1967).

    Google Scholar 

  3. V. L. Girko,Spectral Theory of Random Matrices (Kluwer, Dordrecht, 1990).

    Google Scholar 

  4. F. Haake,Quantum Signatures of Chaos (Springer-Verlag, Heidelberg, 1991).

    Google Scholar 

  5. R. Fernandez, J. Frohlich, and A. Sokal,Random Walks, Critical Phenomena and Triviality in the Quantum Field Theory (Springer-Verlag, Heidelberg, 1992).

    Google Scholar 

  6. E. Brezin, C. Itzykson, G. Parisi, and J. Zuber, Planar diagrams,Commun. Math. Phys. 59:35–51 (1978).

    Article  Google Scholar 

  7. D. Bessis, C. Itzykson, and J. Zuber, Quantum field theory techniques in graphical enumeration.Adv. Appl. Math. 1:109–157 (1980).

    Article  Google Scholar 

  8. D. Lechtenfeld, A. Ray, and R. Ray, Phase diagram and orthogonal polynomials in multiple-well matrix models,Int. J. Mod. Phys. 6:4491–4515 (1991).

    Article  Google Scholar 

  9. L. Pastur, On the universality of the level spacing distribution for some ensemble of random matrices,Lett. Math. Phys. 25:259–265 (1992).

    Article  Google Scholar 

  10. F. J. Dyson, Statistical theory of the energy levels of the complex system. I–III,J. Math. Phys. 3:379–414 (1962).

    Google Scholar 

  11. M. Kac, G. Uhlenbeck, and P. Hemmer, On the van-der-Waals theory of vapor liquid equilibrium,J. Math. Phys. 4:216–247 (1963).

    Article  Google Scholar 

  12. P. Hemmer and J. Lebowitz, System with weak long-range potentials, inPhase Transitions and Critical Phenomena (Academic Press, New York, 1973).

    Google Scholar 

  13. L. Pastur and M. Shcherbina, Long-range limit of correlation functions of lattice systems,Teor. Mat. Fiz. 61:3–16 (1984) [in Russian].

    Google Scholar 

  14. M. Shcherbina, Classical Heisenberg model at zero temperature,Teor. Mat. Fiz. 81:134–144 (1989) [in Russian].

    Google Scholar 

  15. K. Demetrefi, Two-dimensional quantum gravity, matrix models and string theory,Int. J. Mod. Phys. A 8:1185–1244 (1993).

    Article  Google Scholar 

  16. E. Brezin and A. Zee, Universality of the correlations between eigenvalues of large random matrices,Nucl. Phys. B 402:613–627 (1993).

    Article  Google Scholar 

  17. G. M. Cicuta, L. Molinari, and E. Montaldi, Largen phase transition in low dimensions,Mod. Phys. Lett. A 1:125–129 (1986).

    Article  Google Scholar 

  18. N. I. Muskhelishvili,Singular Integral Equations (Noordhoff, Groningen, 1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Monvel, A.B., Pastur, L. & Shcherbina, M. On the statistical mechanics approach in the random matrix theory: Integrated density of states. J Stat Phys 79, 585–611 (1995). https://doi.org/10.1007/BF02184872

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02184872

Key Words

Navigation