Skip to main content
Log in

Are damage spreading transitions generically in the universality class of directed percolation?

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present numerical evidence for the fact that the damage spreading transition in the Domany-Kinzel automaton found by Martinset al. is in the same universality class as directed percolation. We conjecture that also other damage spreading transitions should be in this universality class, unless they coincide with other transitions (as in the Ising model with Glauber dynamics) and provided the probability for a locally damaged state to become healed is not zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Liggett,Interacting Particle Systems (Springer, New York, 1985).

    Google Scholar 

  2. D. Mollison,J. R. Stat. Soc. B 39:283 (1977).

    Google Scholar 

  3. P. Grassberger and K. Sundermeyer,Phys. Lett. B 77:220 (1978).

    Google Scholar 

  4. J. Cardy and R. L. Sugar,J. Phys. A,13:L423 (1980).

    Google Scholar 

  5. M. Moshe,Phys. Rep. C 37:255 (1978).

    Google Scholar 

  6. R. Ziff, E. Gulari, and Y. Barshad,Phys. Rev. Lett. 56:2553 (1986).

    Google Scholar 

  7. I. Jensen, H. C. Fogedby, and R. Dickman,Phys. Rev. A 41:3411 (1990).

    Google Scholar 

  8. P. Beney, M. Droz, and L. Frachebourg,J. Phys. A 23:3353 (1990).

    Google Scholar 

  9. E. V. Albano,Phys. Rev. Lett. 69:656 (1992).

    Google Scholar 

  10. I. Jensen, Ph. D. thesis, Aarhus University (1992).

  11. J. Zhuo, S. Redner, and H. Park,J. Phys. A 26:4197 (1993).

    Google Scholar 

  12. P. Grassberger, unpublished.

  13. H. K. Janssen,Z. Phys. B 42:151 (1981).

    Google Scholar 

  14. P. Grassberger,Z. Phys. B 47:365 (1982).

    Google Scholar 

  15. Y. Pomeau,Physica D 23:3 (1986).

    Google Scholar 

  16. P. Grassberger and T. Schreiber,Physica D 50:177 (1991).

    Google Scholar 

  17. G. Grinstein, Z. W. Lai, and D. A. Browne,Phys. Rev. A 40:4820 (1989).

    Google Scholar 

  18. P. Grassberger, F. Krause, and T. von der, Twer,J. Phys. A 17 L105 (1984); P. Grassberger,J. Phys. A 22:L1103 (1989).

    Google Scholar 

  19. H. Takayasu and A. Yu. Tretyakov,Phys. Rev. Lett. 68:3060 (1992).

    Google Scholar 

  20. I. Jensen, Melbourne preprint (May 1994).

  21. J. Köhler and D. ben-Avraham,J. Phys. A 24:L621 (1991).

    Google Scholar 

  22. K. Yaldram, K. M. Khan, N. Ahmed, and M. A. Khan,J. Phys. A 26:L801 (1993).

    Google Scholar 

  23. I. Jensen,Phys. Rev. Lett. 70:1465 (1993).

    Google Scholar 

  24. I. Jensen, and R. Dickman,Phys. Rev. E 48:1710 (1993).

    Google Scholar 

  25. J. F. F. Mendes, R. Dickman, M. Henkel, and M. Ceu Marques,J. Phys. A 27:3019 (1994).

    Google Scholar 

  26. I. Jensen, Melbourne preprint (May 1994).

  27. H. E. Stanley, D. Stauffer, J. Kertész, and H. Herrmann,Phys. Rev. Lett. 59: 2326 (1987).

    Google Scholar 

  28. U. M. S. Costa,J. Phys. A 20:L583 (1987).

    Google Scholar 

  29. G. le Caër,Physica A 159:329 (1989).

    Google Scholar 

  30. L. de Arcangelis, A. Coniglio, and H. J. Herrmann,Europhys. Lett. 9:749 (1989).

    Google Scholar 

  31. I. A. Campbell,Europhys. Lett. 21:9569 (1993).

    Google Scholar 

  32. N. Jan and T. S. Ray,J. Stat. Phys. 75:1197 (1994).

    Google Scholar 

  33. S. A. Kauffman,J. Theor. Biol. 22:437 (1969).

    Google Scholar 

  34. B. Derrida and D. Stauffer,Europhys. Lett. 2:739 (1986).

    Google Scholar 

  35. L. R. da Silva and H. J. Herrmann,J. Stat. Phys. 52:463 (1988).

    Google Scholar 

  36. A. J. Noest,Phys. Rev. Lett. 57:90 (1986).

    Google Scholar 

  37. S. P. Obukhov and D. Stauffer,J. Phys. A 22:1715 (1989).

    Google Scholar 

  38. E. Domany and W. Kinzel,Phys. Rev. Lett. 53:447 (1984).

    Google Scholar 

  39. J. W. Essam,J Phys. A,22:4927 (1989).

    Google Scholar 

  40. W. Kinzel,Z. Phys. B 58:229 (1985).

    Google Scholar 

  41. G. A. Kohring and M. Schreckenberg,J. Phys. I (France)2:2033 (1992).

    Google Scholar 

  42. F. Bagnoli et al.,J. Phys. A 25:L1071 (1992).

    Google Scholar 

  43. M. L. Martins, H. F. Verona de Resende, C. Tsallis, and A. C. N. de Magalhaes,Phys. Rev. Lett. 66:2045.

  44. H. Rieger, A. Schadschneider, and M. Schreckenberg,J. Phys. A 27:L423 (1994).

    Google Scholar 

  45. R. J. Baxter and A. J. Guttmann,J. Phys. A 21:3193 (1988).

    Google Scholar 

  46. J. W. Essam, A. J. Guttmann, and K. de'Bell,J. Phys. A 21:3815 (1988).

    Google Scholar 

  47. R. Dickman and I. Jensen,Phys. Rev. Lett. 67:1391 (1991).

    Google Scholar 

  48. G. F. Zebende and T. J. P. Penna, preprint (1994).

  49. S. V. Buldyrev et al.,Phys. Rev. A 45:R8313 (1992).

    Google Scholar 

  50. L. H. Tang and H. Leschhorn,Phys. Rev. Lett. 70:3833 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassberger, P. Are damage spreading transitions generically in the universality class of directed percolation?. J Stat Phys 79, 13–23 (1995). https://doi.org/10.1007/BF02179381

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179381

Key Words

Navigation