Skip to main content
Log in

Electron donors and the quinone involved in dimethyl sulfoxide reduction inEscherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Escherichia coli can use dimethyl sulfoxide (DMSO) as an electron acceptor during anaerobic growth on the oxidizable substrate, glycerol. During growth, the DMSO is reduced to dimethyl sulfide (DMS). For the reduction of DMSO, NADH, formate, lactate, reduced benzyl viologen, reduced methyl viologen, and dithionite can serve as electron donors. The terminal reductase and the dehydrogenases linking the various electron donors to the electron transport chain were found to be membrane bound. Chlorate-resistant mutants (chl) were unable to grow and reduce DMSO. However, in the case of thechlD mutant, growth and DMSO reduction can be restored by growth in the presence of high concentrations of molybdate. Mutants ofE. coli blocked in menaquinone (vitamin K2) biosynthesis—menB, menC, andmenD—were unable to grow with DMSO as an electron acceptor, even though the terminal reductase is present in these mutants. Both growth and DMSO reduction could be restored in these mutants by growth in the presence of the menaquinone intermediates,o-succinylbenzoate and 1,4-dihydroxy-2-naphthoate, depending on the metabolic block of the mutant. Thus menaquinone is involved in electron transport during DMSO reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Barrett EL, Kwan HS (1985) Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol 39:131–149

    Article  PubMed  Google Scholar 

  2. Bentley R, Meganathan R (1987) Biosynthesis of the isoprenoid quinones ubiquinone and menaquinone. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds)Escherichia coli andSalmonella typhimurium cellular and molecular biology, vol 1. Washington, DC: American Society for Microbiology, pp 512–520

    Google Scholar 

  3. Bilous PT, Weiner JH (1985) Dimethyl sulfoxide reductase activity by anaerobically grownEscherichia coli HB 101. J Bacteriol 162:1151–1155

    PubMed  Google Scholar 

  4. Biolous PT, Weiner JH (1988) Molecular cloning and expression of theEscherichia coli dimethyl sulfoxide reductase operon. J Bacteriol 170:1511–1518

    PubMed  Google Scholar 

  5. Cotter PA, Gunsalus RP (1989) Oxygen, nitrate, and molybdenum regulation ofdmsABC gene expression inEscherichia coli. J Bacteriol 171:3817–3823

    PubMed  Google Scholar 

  6. Cox JC, Knight R (1981) Trimethylamine N-oxide (TMAO) reductase activity in chlorate-resistant or respiration-deficient mutants ofEscherichia coli. FEMS Microbiol Lett 12:249–252

    Article  Google Scholar 

  7. Ingledew WJ, Poole RK (1984) The respiratory chains ofEscherichia coli. Microbiol Rev 48:222–271

    PubMed  Google Scholar 

  8. Kwan HS, Barrett EL (1983) Roles of menaquinone and the two trimethylamine oxide (TMAO) reductases in TMAO respiration inSalmonella typhimurium: Mu d(Aprlac) insertion mutations inmen andtor. J Bacteriol 155:1147–1155

    PubMed  Google Scholar 

  9. Lambdon PR, Guest JR (1976) Mutants ofEscherichia coli K12 unable to use fumarate as an electron acceptor. J Gen Microbiol 97:145–160

    PubMed  Google Scholar 

  10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein messurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  11. Meganathan R (1984) Inability ofmen mutants ofEscherichia coli to use trimethylamine-N-oxide as an electron acceptor. FEMS Microbiol Lett 24:57–62

    Article  Google Scholar 

  12. Meganathan R, Miguel L (1987) Dimethyl sulphoxide respiration inProteus mirabilis. Microbios 51:191–201

    PubMed  Google Scholar 

  13. Meganathan R, Schrementi J (1987) Tetrahydrothiophene 1-oxide as an electron acceptor forEscherichia coli. J Bacteriol 169:2662–2665

    Google Scholar 

  14. Miguel L, Meganathan R (1987) Requirements for dimethyl sulphoxide reduction inEscherichia coli. Abstracts, Annual Meeting of the American Society for Microbiology, 1987:222

    Google Scholar 

  15. Pascal M-C, Burini J-F, Chippaux M (1984) Regulation of the trimethylamine N-oxide (TMAO) reductase inEscherichia coli: analysis oftor::Mudl operon fusion. Mol Gen Genet 195:351–355

    Article  PubMed  Google Scholar 

  16. Sakaguchi M, Kawai A (1977) Electron donors and carriers for the reduction of trimethylamine N-oxide inEscherichia coli. Bull Japan Soc Scient Fish 43:437–442

    Google Scholar 

  17. Shimokawa O, Ishimoto M (1979) Purification and some properties of inducible tertiary amine N-oxide reductase fromEscherichia coli. J Biochem 86:1709–1717

    PubMed  Google Scholar 

  18. Silvestro A, Pommier J, Giordano G (1988) The inducible trimethylamine N-oxide reductase ofEscherichia coli K12: biochemical and immunological studies. Biochim Biophys Acta 954:1–13

    PubMed  Google Scholar 

  19. Styrvold OB, Strom AR (1984) dimethylsulfoxide and trimethylamine oxide respiration ofProteus vulgaris. Arch Microbiol 140:74–78

    Article  PubMed  Google Scholar 

  20. Taber H (1979) Functions of vitamin K2 in microorganisms. In: Suttie JW (ed) vitamin K metabolism and vitamin K-dependent proteins. Baltimore: University Park Press, pp 177–187

    Google Scholar 

  21. Violet M, Medani C-L, Giordano G (1985) Trimethylamine N-oxide (TMAO) reductases fromEscherichia coli K-12. FEMS Microbiol Lett 27:85–91

    Article  Google Scholar 

  22. Weiner JH, Maclssac DP, Bishop, RE, Bilous PT (1988) Purification and properties ofEscherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specifity. J Bacteriol 170:1505–1510

    PubMed  Google Scholar 

  23. Yamamoto I, Okubo N, Ishimoto M (1986) Further characterization of trimethylamine N-oxide reductase fromEscherichia coli, a molybdoprotein. J Biochem 99:1773–1779

    PubMed  Google Scholar 

  24. Yamamoto I, Hinakura M, Seki S, Seki Y, Kondo H (1990) Anaerobic induction of trimethylamine N-oxide reductase and cytochromes by dimethyl sulfoxide inEscherichia coli. Curr Microbiol 20:245–249

    Article  Google Scholar 

  25. Zinder SH, Brock TD (1978) Dimethyl sulphoxide reduction by microorganisms. J Gen Microbiol 105:335–342

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miguel, L., Meganthan, R. Electron donors and the quinone involved in dimethyl sulfoxide reduction inEscherichia coli . Current Microbiology 22, 109–115 (1991). https://doi.org/10.1007/BF02105385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02105385

Keywords

Navigation