Skip to main content
Log in

Dating of the human-ape splitting by a molecular clock of mitochondrial DNA

Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed. This method takes into account effectively the information contained in a set of DNA sequence data. The molecular clock of mitochondrial DNA (mtDNA) was calibrated by setting the date of divergence between primates and ungulates at the Cretaceous-Tertiary boundary (65 million years ago), when the extinction of dinosaurs occurred. A generalized leastsquares method was applied in fitting a model to mtDNA sequence data, and the clock gave dates of 92.3±11.7, 13.3±1.5, 10.9±1.2, 3.7±0.6, and 2.7±0.6 million years ago (where the second of each pair of numbers is the standard deviation) for the separation of mouse, gibbon, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. Although there is some uncertainty in the clock, this dating may pose a problem for the widely believed hypothesis that the bipedal creatureAustralopithecus afarensis, which lived some 3.7 million years ago at Laetoli in Tanzania and at Hadar in Ethiopia, was ancestral to man and evolved after the human-ape splitting. Another likelier possibility is that mtDNA was transferred through hybridization between a proto-human and a protochimpanzee after the former had developed bipedalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Aldrich-Blake FPG (1968) A fertile hybrid between twoCercopithecus spp. in the Budongo forest, Uganda. Folia Primatol (Basel) 9:15–21

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Google Scholar 

  • Alvarez W, Alvarez LW, Asaro F, Michel HV (1984) The end of the Cretaceous: Sharp boundary or gradual transition? Science 223:1183–1186

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–464

    PubMed  Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) The complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    PubMed  Google Scholar 

  • Andrews P (1981) Species diversity and diet in monkeys and apes during the Miocene. In: Stringer CB (ed) Aspects of human evolution. Taylor and Francis, London, pp 25–61

    Google Scholar 

  • Andrews P (1982) Hominoid evolution. Nature 295:185–186

    PubMed  Google Scholar 

  • Andrews P, Cronin JE (1982) The relationship ofSivapithecus andRamapithecus and the evolution of the orang-utan. Nature 297:541–546

    PubMed  Google Scholar 

  • Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312

    PubMed  Google Scholar 

  • Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282:189–194

    PubMed  Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    PubMed  Google Scholar 

  • Brown GG, Simpson MV (1982) Novel features of animal mtDNA evolution as shown by sequences of two rat cytochrome oxidase subunit II genes. Proc Natl Acad Sci USA 79:3246–3250

    PubMed  Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochndrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    PubMed  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    PubMed  Google Scholar 

  • Cann RL, Brown WM, Wilson AC (1982) Evolution of human mitochondrial DNA: a preliminary report. In: Bonné-Tamir B, Cohen P, Goodman RN (eds) Human genetics, part A: the unfolding genome. Alan R Liss, New York, pp 157–165

    Google Scholar 

  • Chang LYE, Slightom JL (1984) Isolation and nucleotide sequence analysis of the β-type globin pseudogene from human, gorilla and chimpanzee. J Mol Biol 180:767–784

    PubMed  Google Scholar 

  • Ciochon RL, Chiarelli AB (1980) Evolutionary biology of the New World monkeys and continental drift. Plenum Press, New York

    Google Scholar 

  • Ciochon RL, Corruccini RS (1983) New interpretations of ape and human ancestry, Plenum Press, New York

    Google Scholar 

  • Colbert EH (1980) Evolution of the vertebrates, 3rd ed. John Wiley & Sons, New York

    Google Scholar 

  • Cronin JE, Boaz NT, Stringer CB, Rak Y (1981) Tempo and mode in hominid evolution. Nature 292:113–122

    PubMed  Google Scholar 

  • Day MH, Wickens EH (1980) Laetoli Pliocene hominid footprints and bipedalism. Nature 286:385–387

    Google Scholar 

  • Dickerson RE (1971) The structure of cytochrome c and the rates of molecular evolution. J Mol Evol 1:26–45

    PubMed  Google Scholar 

  • Eisenberg JF (1981) The mammalian radiations: an analysis of trends in evolution, adaptation and behavior. University of Chicago Press, Chicago

    Google Scholar 

  • Feldesman MR (1982a) Morphometrics of the ulna of some Cenozoic “hominoids”. Am J Phys Anthropol 57:187

    Google Scholar 

  • Feldesman MR (1982b) Morphometric analysis of the distal humerus of some Cenozoic catarrhines: the late divergence hypothesis revisited. Am J Phys Anthropol 59:73–95

    PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    PubMed  Google Scholar 

  • Ferris SD, Wilson AC, Brown WM (1981a) Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc Natl Acad Sci USA 78:2432–2436

    PubMed  Google Scholar 

  • Ferris SD, Brown WM, Davidson WS, Wilson AC (1981b) Extensive polymorphism in the mitochondrial DNA of apes. Proc Natl Acad Sci USA 78:6319–6323

    PubMed  Google Scholar 

  • Ferris SD, Sage RD, Huang C-M, Nielsen JT, Ritte U, Wilson AC (1983) Flow of mitochondrial DNA across a species boundary. Proc. Natl. Acad Sci USA 80:2290–2294

    PubMed  Google Scholar 

  • Gojobori T, Ishii K, Nei M (1982) Estimation of average number of nucleotide substitutions when the rate of substitution varies with nucleotides. J Mol Evol 18:414–423

    PubMed  Google Scholar 

  • Goodman M (1962) Immunochemistry of the primates and primate evolution. Ann NY Acad Sci 102:219–234

    PubMed  Google Scholar 

  • Goodman M (1963) Serological analysis of the systematics of recent hominoids. Hum Biol 35:377–436

    PubMed  Google Scholar 

  • Goodman M, Braunitzer G, Stangl A, Schrank B (1983) Evidence on human origins from haemoglobins of African apes. Nature 303:546–548

    PubMed  Google Scholar 

  • Goodman M, Koop BF, Czelusniak J, Weiss ML, Slightom JL (1984) The η-globin gene. Its long evolutionary history of the β-globin gene family of mammals. J Mol Biol 180:803–823

    PubMed  Google Scholar 

  • Gribbin J, Cherfas J (1982) The monkey puzzle. Bodley Head, London

    Google Scholar 

  • Harris S, Barrie PA, Weiss ML, Jefereys AJ (1984) The primate ψβ1 gene. An ancient β-globin pseudogene. J Mol Biol 180:785–801

    PubMed  Google Scholar 

  • Hasegawa M (1984) The origin and the evolution of man as inferred from DNA sequences: an introduction to molecular anthropology [in Japanese]. Kaimeisha, Tokyo

    Google Scholar 

  • Hasegawa M, Yano T (1984) Phylogeny and classification of Hominoidea as inferred from DNA sequence data. Proc Jpn Acad 60B:389–392

    Google Scholar 

  • Hasegawa M, Yano T, Kishino H (1984a) A new molecular clock of mitochondrial DNA and the evolution of hominoids. Proc Jpn Acad 60B:95–98

    Google Scholar 

  • Hasegawa M, Yano T, Miyata T (1984b) Evolutionary implications of error amplification in self-replicating and protein synthesizing machinery. J Mol Evol 20:77–85

    PubMed  Google Scholar 

  • Hasegawa M, Iida Y, Yano T, Takaiwa F, Iwabuchi M (1985) Phyogenetic relationships among eukaryotic kingdoms inferred by ribosmal RNA sequences. J Mol Evol (in press)

  • Johanson DC, White TD (1979) A systematic assessment of early African hominids. Science 202:321–330

    Google Scholar 

  • Johanson DC, White TD, Coppens Y (1978) A new species of the genusAustralopithecus (Primates: Hominidae) from the Pliocene of eastern Africa. Kirtlandia 28:1–14

    Google Scholar 

  • Johnson MJ, Wallace DC, Ferris SD, Rattazzi MC, Cavalli-Sforza LL (1983) Radiation of human mitochondrial DNA types analyzed by restriction endonuclease cleavage patterns. J Mol Evol 19:255–271

    PubMed  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    PubMed  Google Scholar 

  • Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276

    PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Google Scholar 

  • Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78:454–458

    PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kimura M, Ohta T (1974) On some principles governing molecular evolution. Proc Natl Acad Sci USA 71:2848–2852

    PubMed  Google Scholar 

  • Kohne DE (1970) Evolution of higher-organism DNA. Rev Biophys 33:1–48

    Google Scholar 

  • Kohne DE, Chiscon JA, Hoyer BH (1972) Evolution of primate DNA sequences. J Hum Evol 1:627–644

    Google Scholar 

  • Leakey MD, Hay RL, Curtis GH, Drake RE, Jackes MK, White TD (1976) Fossil hominids from the Laetolil Beds. Nature 262:460–466

    PubMed  Google Scholar 

  • Lewin R (1983) Is the orangutan a living fossil? Science 222:1222–1223

    PubMed  Google Scholar 

  • Liebhaber SA, Begley KA (1983) Structural and evolutionary analysis of the two chimpanzee α-globin mRNAs. Nucleic Acids Res 11:8915–8929

    PubMed  Google Scholar 

  • Macdonald D (1984) The encyclopaedia of mammals, vol. 1. George Allen & Unwin, London, pp 396–397

    Google Scholar 

  • McKenna MC (1975) Toward a phylogenetic classification of the mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the primates: a multidisciplinary approach. Plenum Press, New York, pp 21–46

    Google Scholar 

  • Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayashi M, Koike K (1982) Molecular clock of silent substitution: at least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J Mol Evol 19:28–35

    PubMed  Google Scholar 

  • Moore J (1984) Female transfer in primates. Int J Primatol 5:537–589

    Google Scholar 

  • Nagel U (1973) A comparison of anubis baboons, hamadryas baboons and their hybrids at a species border in Ethiopia. Folia Primatol (Basel) 19:104–165

    Google Scholar 

  • Nei M (1982) Evolution of human races at the gene level. In: Bonné-Tamir B, Cohen P, Goodman M (eds) Human genetics, part A: the unfolding genome. Alan R Liss, New York, pp 167–181

    Google Scholar 

  • Novacek MJ (1982) Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny. In: Goodman M (ed) Macromolecular sequences in systematic and evolutionary biology. Plenum Press, New York, pp 3–41

    Google Scholar 

  • Nozawa K, Shotake T, Kawamoto Y, Tanabe Y (1982) Electrophoretically estimated genetic distance and divergence time between chimpanzee and man. Primates 23:432–443

    Google Scholar 

  • Oxnard CE (1975) The place of the australopithecines in human evolution: Grounds or doubt? Nature 258:389–395

    PubMed  Google Scholar 

  • Oxnard CE (1984) The order of man: a biomathematical anatomy of the primates. Yale University Press, New Haven

    Google Scholar 

  • Pilbeam D (1982) New hominoid skull material from the Miocene of Pakistan. Nature 295:232–234

    PubMed  Google Scholar 

  • Pilbeam D (1984) The descent of hominoids and hominids. Sci Am 250(3):60–69

    Google Scholar 

  • Powell JR (1983) Interspecific cytoplasmic gene flow in the absence of nuclear gene flow: evidence fromDrosophila. Proc. Natl Acad Sci USA 80:492–495

    PubMed  Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1984) Periodicity of extinctions in the geologic past. Proc. Natl Acad Sci USA 81:801–805

    PubMed  Google Scholar 

  • Raza SM, Barry JC, Pilbeam D, Rose MD, Shah SMI, Ward S (1983) New hominoid primates from the middle Miocene Chinji Formation, Potwar Plateau Pakistan. Nature 306:52–54

    Google Scholar 

  • Sarich VM, Cronin JE (1976) Molecular systematics of the primates. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York, pp 141–170

    Google Scholar 

  • Sarich VM, Cronin JE (1977) Generation length and rates of hominoid molecular evolution. Nature 269:354

    Google Scholar 

  • Sarich VM, Cronin JE (1980) South American mammal molecular systematics, evolutionary clocks, and continental drift. In: Ciochon RL, Chiarelli AB (eds) Evolutionary biology of the New World monkeys and continental drift. Plenum Press, New York, pp 399–421

    Google Scholar 

  • Sarich VM, Wilson AC (1967) Immunological time scale for hominid evolution. Science 158:1200–1203

    PubMed  Google Scholar 

  • Sarich VM, Wilson AC (1973) Generation time and genomic evolution in primates. Science 179:1144–1147

    PubMed  Google Scholar 

  • Sarna-Wojcicki AM, Meyer CE, Roth PH, Brown FH (1985) Ages of tuff beds at East African early hominid sites and sediments in the Gulf of Aden. Nature 313:306–308

    Google Scholar 

  • Savage DE, Russell DE (1983) Mammalian paleofaunas of the world, Addison-Wesley, London

    Google Scholar 

  • Schwartz JH (1984) The evolutionary relationships of man and orang-utans. Nature 308:501–505

    PubMed  Google Scholar 

  • Scott AF, Heath P, Trusko S, Boyer SH, Prass W, Gooman M, Czelusniak J, Chang L-YE, Slightom JL (1984) The sequence of the gorilla fetal globin genes: evidence for multiple gene conversions in human evolution. Mol Biol Evol 1:371–389

    PubMed  Google Scholar 

  • Shotake T (1981) Population genetical study of natural hybridization betweenPapio anubis andP. hamadryas. Primates 22:285–308

    Google Scholar 

  • Sibley CG, Ahlquist JE (1984) The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J Mol Evol 20:2–15

    PubMed  Google Scholar 

  • Simons EL (1976) The fossil record of primate phylogeny. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York, pp 35–62

    Google Scholar 

  • Simons EL (1981) Man's immediate forerunners. Philos Trans R Soc Lond [Biol] 292:21–41

    Google Scholar 

  • Spolsky C, Uzzell T (1984) Natural interspecies transfer of mitochondrial DNA in amphibians. Proc Natl Acad Sci USA 81:5802–5805

    PubMed  Google Scholar 

  • Stern JT Jr, Susman RL (1981) Electromyography of the gluteal muscles inHylobates, Pongo andPan: implications for the evolution of hominid bipedality. Am J Phys Anthropol 55:153–166

    Google Scholar 

  • Stern JT Jr, Susman RL (1983) The locomotor anatomy ofAustralopithecus afarensis. Am J Phys Anthropol 60:279–318

    PubMed  Google Scholar 

  • Sugawara K (1982) Sociological comparison between two wild groups of anubis-hamadryas hybrid baboons. Afr Study Monogr 2:73–131

    Google Scholar 

  • Takahata N, Kimura M (1981) A model of evolutionary base substitutions and its application with special reference to rapid change of pseudogenes. Genetics 98:641–657

    PubMed  Google Scholar 

  • Takahata N, Slatkin M (1984) Mitochondrial gene flow. Proc Natl Acad Sci USA 81:1764–1767

    PubMed  Google Scholar 

  • Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221–244

    Google Scholar 

  • White TD (1980) Evolutionary implications of Pliocene hominid footprints. Science 208:175–176

    Google Scholar 

  • White TD, Johanson DC, Kimbel WH (1981)Australopithecus africanus: its phyletic position reconsidered. S Afr J Sci 77:445–470

    Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    PubMed  Google Scholar 

  • Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215:1525–1530

    PubMed  Google Scholar 

  • Zihlman AL (1979) Pygmy chimpanzee morphology and the interpretaton of early hominids. S Afr J Sci 75:165–168

    Google Scholar 

  • Zihlman AL, Cronin JE, Cramer DL, Sarich VM (1978) Pygmy chimpanzee as a possible prototype for the common ancestor of humans, chimpanzees and gorillas. Nature 275:744–746

    PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 189–225

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, M., Kishino, H. & Yano, Ta. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174 (1985). https://doi.org/10.1007/BF02101694

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101694

Key words

Navigation