Skip to main content
Log in

Differential effects of haloperidol, clozapine, and fluperlapine on tuberoinfundibular dopamine neurons and prolactin secretion in the rat

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Two atypical neuroleptic agents, clozapine and fluperlapine, produced rapid elevations in plasma PRL concentrations that were similar in magnitude to those produced by haloperidol. However, the PRL response to clozapine or fluperlapine was of much shorter duration than that elicited by haloperidol. Clozapine, but neither fluperlapine nor haloperidol, produced a rapid increase in the activity of tuberoinfundibular dopamine (TIDA) neurons, as evidenced by an enhanced accumulation of dihydroxyphenylalanine (DOPA) in the median eminence after the inhibition of DOPA decarboxylase. The clozapine-induced increase in DOPA accumulation was evident within 30 minutes after its administration and persisted for at least 4 hours. The clozapine-induced increase in the activity of TIDA neurons may account, in part, for the abbreviated PRL response to this neuroleptic. In addition, ability to produce a short-lived increase in PRL secretion in the rat appears to be common to the atypicl neuroleptic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartholini G, Haefely W, Jalfre M, Keller HH, Pletscher A (1972) Effects of clozapine on central catecholaminergic neuron systems. Br J Pharmacol 46: 736

    PubMed  Google Scholar 

  • Ben-Jonathan N, Oliver C, Mical RS, Porter JC (1977) Dopamine in hypophysial portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology 100: 542–548

    Google Scholar 

  • Bjerkenstedt L, Gullberg B, HÄrnyrd C, Sedvall G (1979) Relationship between clinical and biochemical effects of melperone and thiothixene in psychotic women. Arch Psychiat Nervenkr 227: 181–192

    Article  PubMed  Google Scholar 

  • Bjerkenstedt L, Eneroth P, HÄrnyrd C, Sedvall G (1977) Effects of melperone and thiothixene on prolactin levels in cerebrospinal fluid and plasma of psychotic women. Arch Psychiat Nervenkr 224: 281–293

    Article  PubMed  Google Scholar 

  • Caron MG, Beaulieu M, Raymond V, Gagné B, Drouin J, Lefkowitz RJ, Labrie F (1978) Dopaminergic receptors in the anterior pituitary gland. J Biol Chem 253: 2244–2253

    PubMed  Google Scholar 

  • Chiodo CA, Bunney BS (1983) Typical and atypical neuroleptics; differential effects of chronic administration on the activity of A 9 and A 10 midbrain dopaminergic neurons. J Neuroscience 3: 1607–1619

    Google Scholar 

  • Clemens JA, Smalstig EG, Sawyer BD (1974) Antipsychotic drugs stimulate prolactin release. Psychopharmacology 40: 123–127

    Article  Google Scholar 

  • Creese I, Schneider R, Snyder SH (1977)3H-spiroperidol labels dopamine receptors in pituitary and brain. Eur J Pharmacol 46: 377–381

    Article  PubMed  Google Scholar 

  • Cronin MJ, Roberts JM, Weiner RI (1978) Dopamine and dihydroergocryptine binding to the anterior pituitary and other brain areas of the rat and sheep. Endocrinology 103: 302–309

    PubMed  Google Scholar 

  • Cuello AC, Horn AS, Mackay AVP, Iversen LL (1974) Catecholamines in the median eminence: new evidence for a major noradrenergic input. Nature 243: 465–467

    Article  Google Scholar 

  • Demarest KT, Moore KE (1979) Comparison of dopamine synthesis regulation in terminals of nigrostriatal, mesolimbic, tuberoinfundibular and tuberohypophyseal neurons. J Neural Transm 46: 263–277

    Article  PubMed  Google Scholar 

  • Demarest KT, Moore KE (1980) Accumulation of L-dopa in the median eminence: An index of tuberoinfundibular dopaminergic nerve activity. Endocrinology 106: 463–468

    PubMed  Google Scholar 

  • Demarest KT, Moore KE (1981) Sexual differences in the sensitivity of tuberoinfundibular dopamine neurons to the actions of prolactin. Neuroendocrinology 33: 230–234

    PubMed  Google Scholar 

  • Demarest KT, Riegle GD, Moore KE (1984) Prolactin-induced activation of tuberoinfundibular dopaminergic neurons: evidence for both a rapid tonic and a delayed induction component. Neuroendocrinology 38: 467–475

    PubMed  Google Scholar 

  • Dieterle D, Eben E, EinhÄupi K, Hippius H, Klein H, Rüther E, Schmauss M (1984) The effect of fluperlapine in acute psychotic patients. Pharmacopsychiatry 17: 57–60

    PubMed  Google Scholar 

  • Eichenberger E (1984) Pharmacology of fluperlapine compared with clozapine. Arzneim-Forsch/Drug Res 34: 110–113

    Google Scholar 

  • Fink H, Morgenstern R, Oelssmer W (1984) Clozapine — a serotonin antagonist. Pharmacol Biochem Behav 20: 513–517

    Article  PubMed  Google Scholar 

  • Fischer-Cornellsen KA (1984) Fluperlapine in 104 schizophrenic patients. Open multicenter trial. Arzneimittelforschung 34: 125–130

    PubMed  Google Scholar 

  • Gibbs DM, Neill JD (1978) Dopamine levels in hypophysial stalk blood in the rat are sufficient to inhibit prolactin secretionin vivo. Endocrinology 102: 1895–1900

    PubMed  Google Scholar 

  • Gudelsky GA (1981) Tuberoinfundibular dopaminergic neurons and the regulation of prolactin secretion. Psychoneuroendocrinology 6: 3–16

    Article  PubMed  Google Scholar 

  • Gudelsky GA, Moore KE (1976) A comparison of the effects of haloperidol on dopamine turnover in the striatum, olfactory tubercle and median eminence of the rat brain. J Pharmacol Exp Ther 202: 149–156

    Google Scholar 

  • Gudelsky GA, Porter JC (1980) Release of dopamine from tuberoinfundibular neurons into pituitary stalk blood following prolactin or haloperidol administration. Endocrinology 106: 526–529

    PubMed  Google Scholar 

  • Korsgaard S, Noring U, Gerlach J (1984) Fluperlapine in tardive dyskinesia and parkinsonism. Psychopharmacology 84: 76–79

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AJ, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  Google Scholar 

  • MacLeod RM (1976) In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology. Raven Press, New York, pp 169–194

    Google Scholar 

  • Marco E, Mao CC, Cheney DL, Reruelta A, Costa E (1976) The effects of antipsychotics on the turnover rate of GABA and acetylcholine in rat brain nuclei. Nature 264: 363–365

    Article  PubMed  Google Scholar 

  • McMillen BA, Shore PA (1978) Comparative effects of clozapine and alphaadrenoreceptor blocking drugs on regional noradrenaline metabolism in rat brain. Eur J Pharmacol 52: 225–230

    Article  PubMed  Google Scholar 

  • Meltzer HY, Daniels S, Fang VS (1976) Clozapine increases rat serum prolactin levels. Life Sci 17: 339–342

    Article  Google Scholar 

  • Meltzer HY, Goode DJ, Schyve PM, Young M, Fang VS (1979 a) Effect of clozapine on human serum prolactin levels. Am J Psychiat 136: 1550–1555

    PubMed  Google Scholar 

  • Meltzer HY, So R, Miller RJ, Fang VS (1979 b) Comparison of the effects of substituted benzamides and standard neuroleptics on the binding of3H-spiroperidol in the rat pituitary and striatum within vivo effects on rat prolactin secretion. Life Sci 25: 573–584

    Article  PubMed  Google Scholar 

  • Miller RJ, Hiley CR (1974) Anti-muscarinic properties of neuroleptics and drug induced parkinsonism. Nature 248: 596–597

    Article  PubMed  Google Scholar 

  • Nair NPV, Lal S, Cervantes C, Yassa R, Guyda H (1979) Effect of clozapine or apomorphine-induced growth hormone secretion and serum prolactin concentration in schizophrenia. Neuropsychobiology 5: 136–142

    PubMed  Google Scholar 

  • Pelham RW, Munsat TL (1979) Identification of direct competition for, and indirect influences on striatal muscarinic cholinergic receptors:In vitro 3H-quinuclidinyl benzilate binding in rats. Brain Res 171: 473–480

    Article  PubMed  Google Scholar 

  • Sachar EJ, Gruen PH, Altman N, Halpern FS, Frantz AG (1976) In: Sachar EJ (ed) Hormones, behavior and psychopathology. Raven Press, New York, pp 161–176

    Google Scholar 

  • Selmanoff M (1985) Rapid effects of hyperprolactinemia on basal prolactin secretion and dopamine turnover in the medial and lateral median eminence. Endocrinology 116: 1943–1952

    PubMed  Google Scholar 

  • Stille G, Lauener H, Eichenberg F (1971) The pharmacology of 8-chloro-11-(4-methyl-L-piperazinyl)-5H-dibenzo[b,e][1,4] diazepine (clozapine). Il Farmaco 26: 603–625

    Google Scholar 

  • Weeks JR, Davis JD (1964) Chronic intravenous cannulas for rats. J Appl Physiol 19: 540–541

    PubMed  Google Scholar 

  • White FJ, Wang RY (1983) Differential effects of classical and atypical antipsychotic drugs on A 9 and A 10 dopamine neurons. Science 221: 1054–1057

    PubMed  Google Scholar 

  • Wiesel F-A, Bjerkenstedt L, Skett P (1978) Effect of melperone, two of its metabolites and thiothixene on central monoamine metabolism and prolactin levels in rodents. Acta pharmacol toxicol 43: 129–136

    Google Scholar 

  • Wilk S, Watson E, Stanley ME (1975) Differential sensitivity of two dopaminergic structures in rat brain to haloperidol and to clozapine. J Pharmacol Exp Ther 195: 265–270

    PubMed  Google Scholar 

  • Woggon B, Angst J, Bartels N, Heinrich K, Hippius H, Koukkon M, Kiebs E, Küfferle B, Müller-Oerlinghausen B, Poldinger W, Ruther E, Schied HW (1984) Antipsychotic efficacy of fluperlapine: an open multicenter trial. Neuropsychobiology 11: 116–120

    PubMed  Google Scholar 

  • York DH (1975) In: Iversen LE, Iversen SD, Snyder SH (eds) Biogenic amine receptors. Plenum Press, New York, pp 23–61

    Google Scholar 

  • Young MA, Meltzer HY (1980) RMI-81582, a novel antipsychotic drug. Psychopharmacology 67: 101–106

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudelsky, G.A., Koenig, J.I., Simonovic, M. et al. Differential effects of haloperidol, clozapine, and fluperlapine on tuberoinfundibular dopamine neurons and prolactin secretion in the rat. J. Neural Transmission 68, 227–240 (1987). https://doi.org/10.1007/BF02098500

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02098500

Key words

Navigation