Skip to main content
Log in

Relationship between serum intact parathyroid hormone concentrations and bone remodeling in type I osteoporosis: Evidence that skeletal sensitivity is increased

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

To define the role of parathyroid gland function in the pathophysiology of bone loss in type I (postmenopausal) osteoporosis, we measured serum intact parathyroid hormone (PTH) concentration by immunoradiometric assay (IRMA) and by multisite immunochemiluminometric assay (ICMA) in 63 postmenopausal osteoporotic women (PMOp) with vertebral compression fractures and in 75 age-comparable postmenopausal normal women (PMNl). Also, tetracycline-based histomorphometric indices in cancellous bone were assessed in iliac biopsy samples from 61 PMOp and 28 PMNl women. Serum PTH concentrations by IRMA were similar in PMOp and PMNl (medians, 3.92 and 3.77 pmol/l; NS) but were significantly lower in PMOp by the more sensitive ICMA (medians, 2.82 and 3.14 pmol/l;P<0.01). By multiple linear regression analysis, serum PTH was directly related (P<0.001) to activation frequency, bone resorption rate, bone formation rate, and the calculated rate of bone loss. For each unit (pmol/l) increase in serum PTH by ICMA, activation frequency increased by 1.3%/year more (P=0.01), bone resorption rate increased by 3.9%/year more (P=0.003), and the rate of cancellous bone loss was 2.8% greater (P= 0.0003) in the PMOp women compared with the PMNl women. Concentrations of serum estradiol, but not serum estrone, had a weak opposing effect to PTH, especially for bone formation rate. These data suggest that in PMOp the bone has increased sensitivity to the biologic effects of PTH. This may represent one of the fundamental pathophysiologic defects in PMOp and, in the setting of estrogen deficiency, may explain, in part, their greater rate of bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Burkhardt JM, Jowsey J. Parathyroid and thyroid hormones in the development of immobilization osteoporosis. Endocrinology 1967; 81: 1053–62.

    PubMed  Google Scholar 

  2. Jowsey J, Raisz LG. Experimental osteoporosis and parathyroid activity. Endocrinology 1968; 82: 384–96.

    PubMed  Google Scholar 

  3. Seeman E, Wahner HW, Offord KP, Kumar R, Johnson WJ, Riggs BL. Differential effects of endocrine dysfunction on the axial and appendicular skeleton. J Clin Invest 1982; 69: 1302–9.

    PubMed  Google Scholar 

  4. Riggs BL, Arnaud CD, Jowsey J, Goldsmith RS, Kelly PJ. Parathyroid function in primary osteoporosis. J Clin Invest 1973; 52: 181–4.

    PubMed  Google Scholar 

  5. Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. J Clin Invest 1979; 64: 729–36.

    PubMed  Google Scholar 

  6. Gallagher JC, Riggs BL, Jerpbak CM, Arnaud CD. The effect of age on serum immunoreactive parathyroid hormone in normal and osteoporotic women. J Lab Clin Med 1980; 95: 373–85.

    PubMed  Google Scholar 

  7. Fujita T, Orimo H, Okano K et al. Radioimmunoassay of serum parathyroid hormone in postmenopausal osteoporosis. Endocrinol Jpn 1972; 19: 571–7.

    PubMed  Google Scholar 

  8. Berlyne GM, Ben-Ari JJ, Galinsky D, Hirsch M, Kushelevsky A, Shainkin R. The etiology of osteoporosis: the role of parathyroid hormone. JAMA 1974; 299: 1904–5.

    Google Scholar 

  9. Orima H, Shiraki M. Role of calcium regulating hormones in the pathogenesis of senile osteoporosis. Endocrinol Jpn 1979; 1: 1–6.

    Google Scholar 

  10. Bouillon R, Guerens P, Dequecker J, DeMoor P. Parathyroid function in primary osteoporosis. Clin Sci 1979; 57: 897–903.

    Google Scholar 

  11. Lindsay R, Sweeney A. Urinary cyclic-AMP in osteoporosis.Scott Med J 1976; 21: 231–2.

    Google Scholar 

  12. Riggs BL, Hamstra A, DeLuca HF. Assessment of 25-hydroxyvitamin D 1α-hydroxylase reverse in postmenopausal osteoporosis by administration of parathyroid extract. J Clin Endocrinol Metab 1981; 53: 883–5.

    PubMed  Google Scholar 

  13. Nussbaum SR, Zahradnik RJ, Lavigne JR et al. Highly sensitive two-site immunoradiometric assay of parathyrin, and its clinical utility in evaluating patients with hypercalcemia. Clin Chem 1987; 33: 1364–7.

    PubMed  Google Scholar 

  14. Brown RC, Atson JP, Weeks I, Woodhead JS. Circulating intact parathyroid hormone measured by a two-site immunochemiluminometric assay. J Clin Endocrinol Metab 1987; 65: 407–14.

    PubMed  Google Scholar 

  15. Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O'Fallon WM, Riggs BL. Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption and bone loss at tissue and cellular levels. J Bone Min Res 1990; 5: 311–9.

    Google Scholar 

  16. Charles P, Eriksen EF, Mosekilde L, Melsen F, Jensen FT. Bone turnover and balance evaluated by combined calcium balance and47calcium kinetic study and dynamic histomorphometry. Metabolism 1987; 36: 1118–24.

    PubMed  Google Scholar 

  17. Klee G, Preissner C, Schryver P, Taylor R, Kao R. Development and validation of an immunochemiluminometric assay for whole molecule and N-terminal parathyroid hormone. Clin Chem 1989; 35: 1147–8.

    Google Scholar 

  18. Eastell R, Delmas PD, Hodgson SF, Eriksen EF, Mann KG, Riggs BL. Bone formation rate in older women: concurrent assessment with bone histomorphometry, calcium kinetics and biochemical markers. J Clin Endocrinol Metab 1988; 67: 741–8.

    PubMed  Google Scholar 

  19. Parfitt AM, Drezner MK, Glorieux FM et al. Bone histomorphometry: Standardization of nomenclature, symbols and units. J Bone Min Res 1987; 2: 595–610.

    Google Scholar 

  20. Devane GW, Czekala NM, Judd HL, Yenn SCC. Circulating gonadotrophins, estrogens and androgens in polycystic ovarian disease. Am J Obstet Gynecol 1975; 121: 496–500.

    PubMed  Google Scholar 

  21. Kleinbaum PG, Krepper LL, Muller KE. Dummy variables in regression. In: Payne M, ed. Applied regression analysis and other multivariate methods. Boston, Mass: PWS-Kent Publishing Company, 1988; 260–96.

    Google Scholar 

  22. Morrissey JJ, Hamilton JW, MacGregor RR, Cohn DV. The secretion of parathormone fragments 34–84 and 37 –84 by dispersed procine parathyroid cells. Endocrinology 1980; 107: 164–71.

    PubMed  Google Scholar 

  23. Canterbury JM, Reiss E. Multiple immunoreactive molecular forms of parathyroid hormone in human serum. Proc Soc Exp Biol Med 1972; 140: 1393–8.

    PubMed  Google Scholar 

  24. Arnaud CD, Goldsmith RS, Bordier PJ, Sizemore GW, Larsen JA, Gilkinson J. Influence of immunoheterogeneity of circulating parathyroid hormone on results of radioimmunoassay of serum in man. Am J Med 1974; 56: 785–93.

    PubMed  Google Scholar 

  25. Silverberg SJ, Shane E, de la Cruz L, Segre GV, Clemens TH, Bilezikian JP. Abnormalities in parathyroid hormone secretion and 1,25-dihydroxyvitamin D3 formation in women with osteoporosis. N Engl J Med 1989; 320: 277–81.

    PubMed  Google Scholar 

  26. Weeks I, Beheshti I, McCapra F, Campbell AK, Woodhead JS. Acridinium esters as high specific activity labels in immunoassay. Clin Chem 1983; 29: 1474–9.

    PubMed  Google Scholar 

  27. Caniggia A, Genari C, Bianchi V, Guidrei R. Intestinal absorption of45Ca in senile osteoporosis. Acta Med Scand 1963; 173: 613–17.

    PubMed  Google Scholar 

  28. Bullamore JR, Gallagher JC, Wilkinson R, Nordin BEC, Marshall DH. Effect of age on calcium absorption. Lancet 1970; ii: 535–7.

    Google Scholar 

  29. Nordin BEC, Peacock M, Crilly RG, Marshall DH. Calcium absorption and plasma 1,25(OH)2D levels in postmenopausal osteoporosis. In: Norman AW, Schaefer K, Herrath Dv, et al., eds. Vitamin D, basic research and its clinical application. New York: Walter de Gruyter, 1979; 99–106.

    Google Scholar 

  30. Francis RM, Peacock M, Taylor GA, Storer JH, Nordin BEC. Calcium malabsorption in elderly women with vertebral fractures: evidence for resistance to the action of vitamin D metabolites on the bowel. Clin Sci 1984; 66: 103–107.

    PubMed  Google Scholar 

  31. Pacifici R, Rifas L, Teitelblaum S et al. Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci USA 1987; 84: 4616–20.

    PubMed  Google Scholar 

  32. Heaney RP. A unified concept of osteoporosis. Am J Med 1965; 39: 877–80.

    PubMed  Google Scholar 

  33. Riggs BL, Jowsey J, Goldsmith RS, Kelly PJ, Hoffman DL, Arnaud CD. Short- and long-term effects of estrogen and synthetic anabolic hormone in postmenopausal osteoporosis. J Clin Invest 1972; 51: 1659–63.

    PubMed  Google Scholar 

  34. Tsai KS, Ebeling PR, Riggs BL. Bone responsiveness to parathyroid hormone in normal and osteoporotic postmenopausal women. J Clin Endocrinol Metab 1989; 69: 1024–7.

    PubMed  Google Scholar 

  35. Uebelhart D, Gineyts E, Chapuy M-C, Delmas PD. Urinary excretion of pyridinium crosslinks: a new marker of bone resorption in metabolic bone disease. Bone Miner 1990; 8: 87–96.

    PubMed  Google Scholar 

  36. Marshall DH, Crilly RG, Nordin BEC. Plasma androstenedione and oestrone levels in normal and osteoporotic postmenopausal women. Br Med J 1977; ii: 1177–79.

    Google Scholar 

  37. Crilly R, Cawood M, Marshall DH et al. Hormonal status in normal, osteoporotic and corticosteroid-treated postmenopausal women. R Soc Med 1978; 71: 733–6.

    Google Scholar 

  38. Riggs BL, Ryan RJ, Wahner HW et al. Serum concentrations of estrogen, testosterone and gonadotropins in osteoporotic and nonosteoporotic postmenopausal women. J Clin Endocrinol Metab 1973; 36: 1097–9.

    PubMed  Google Scholar 

  39. Manolagas SC, Lindsay R, Anderson DC. Adrenal steroids and the development of osteoporosis in oophorectomized women. Lancet 1979; ii: 597–600.

    Google Scholar 

  40. Johnston CC Jr, Norton JA Jr, Khairi RA et al. Age-related bone loss. In: Barzel US, ed. Osteoporosis II. New York: Grune & Stratton, 1979; 91–100.

    Google Scholar 

  41. Smith W. Dietary and hormonal factors in bone loss. Fed Proc 1967; 16: 1737.

    Google Scholar 

  42. Davidson BJ, Riggs BL, Wahner HW, Judd HL. Endogenous cortisol and sex steroids in patients with osteoporotic spinal fractures. Obstet Gynecol 1983; 61: 275–8.

    PubMed  Google Scholar 

  43. Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 1988; 241: 84–6.

    PubMed  Google Scholar 

  44. Gray TK, Flynn TC, Gray KM, Nabell LM. 17β-Estradiol acts directly on the clonal osteoblastic cell line UMR 106. Proc Natl Acad Sci USA 1987; 84: 6267–71.

    PubMed  Google Scholar 

  45. Heaney RP. Calcium, bone health and osteoporosis. In Peck WA, ed. The bone and mineral research annual 4. Amsterdam: Elsevier, 1986; 255–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotowicz, M.A., Klee, G.G., Kao, P.C. et al. Relationship between serum intact parathyroid hormone concentrations and bone remodeling in type I osteoporosis: Evidence that skeletal sensitivity is increased. Osteoporosis Int 1, 14–22 (1990). https://doi.org/10.1007/BF01880411

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01880411

Keywords

Navigation