Skip to main content
Log in

Flavonoid pigments in chalkhill blue (Lysandra coridon Poda) and other lycaenid butterflies

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Nine flavonoids, namely, kaempferol, kaempferol 7-rharanoside, kaempferol 3-rhamnoside, kaempferol 3-glucoside, kaempferol 3-glucoside, 7-rhamnoside, quercetin 3-glucoside, quercetin 3,7-diglucoside, isorhamnetin 3-glucoside, and isorhamnetin 3,7-diglucoside, have been identified in the body and wings of the chalkhill blue butterflyLysandra coridon Poda. Flavonoids have also been found in 15 of a further 17 lycaenid species examined. Analysis of the two-dimensional paper chromatographic flavonoid patterns and aglycone results has shown that the flavonoid content ofL. coridon and the other lycaenids is dependent on the flavonoid content of the larval diet. Differences in the flavonoid patterns ofL. coridon and its leguminous larval food plantsHippocrepis comosa, Anthyllis vulneraria, andLotus corniculatus, indicate that the ingested flavonoids are metabolized byL. coridon or its gut flora before sequestration. Despite the presence of fiavones, glycoflavones, and isoflavones in the larval food plant species, only flavonols are sequestered by the lycaenid species examined. The relationship between lycaenid butterflies and their larval food plants, and the possible role(s) of flavonoids in lycaenids has been discussed. Interactions between ants, plants, flavonoids, and myrmecophilous lycaenids have also been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brower, L.P. 1985. Chemical defence in butterflies. Biology of butterflies.Symp. R. Entomol Soc. London. 11:109–143.

    Google Scholar 

  • Brower, L.P., Sieber, J.N., Nelson, C.J., Lynch, S.P., andTuskes, P.M. 1982. Plant-determined variation in the cardenolide content, thin-layer Chromatographic profiles, and emetic potency of monarch butterflies,Danaus plexippus reared on the milkweedAscelepias eriocarpa in California.J. Chem. Ecol. 8:579–633.

    Google Scholar 

  • Cottrell, C.B. 1983. Aphytophagy in butterflies: Its relationship to myrmecophily.Zool. J. Linn. Soc. 79:1–57.

    Google Scholar 

  • Downey, J.C. 1962. Myrmecophily inPlebejus (Icaricia) icariodes (Lepidoptera: Lyeaenidae).Entomol. News 73:57–66.

    Google Scholar 

  • Edgar, J.A. andCulvenor, C.C.J. 1974. Pyrrolizidine ester alkaloid in danaid butterflies.Nature 250:614–616.

    Google Scholar 

  • Edgar, J.A., Culvenor, C.C.J., andPliske, T.E. 1974. Coevolution of danaid butterflies with their host plants.Nature 250:646–648.

    PubMed  Google Scholar 

  • Ehrlich, P.R., andRaven, P.H. 1964. Butterflies and plants: A study in coevolution.Evolution 18:586–608.

    Google Scholar 

  • Eliot, J.N. 1973. The higher classification of the Lyeaenidae (Lepidoptera): a tentative arrangement.Bull. Bur. Mus. (Nat. Hist.) Entomol. 28:375–505.

    Google Scholar 

  • Feltwell, J.S., andValadon, L.R.G. 1970. Plant pigments identified in the common blue butterfly.Nature 255:969.

    Google Scholar 

  • Ford, E.B. 1941. Studies on the chemistry of pigments in the lepidoptera, with reference to their bearing on systematics. 1. The anthoxanthins.Proc. R. Entomol. Soc. London (A) 16:65–90.

    Google Scholar 

  • Ford, E.B. 1944. Studies on the chemistry of pigments in the lepidoptera, with reference to their bearing on systematics. 4. The classification of the Papilionidae.Trans. R. Entomol. Soc. London (A) 19:92–106.

    Google Scholar 

  • Ford, E.B. 1945. Butterflies. Collins, London.

    Google Scholar 

  • Fujimoto, N., Hayashiya, K., andJono, S. 1959. Studies on the pigments of cocoon. (V) On the pigments of cocoon ofTheophila mandarina Moore.J. Sericult. Sci. Jpn. 28:84–87.

    Google Scholar 

  • Gonnet, J.F. 1975. Flavonol glycosides ofAnthyllis vulneraria leaves.Phytochemistry 14:823–828.

    Google Scholar 

  • Gonnet, J.F., andJay, M. 1972. Les aglycones flavoniquesd'Anthyllis vulnéraria.Phytochemistry 11:2313–2316.

    Google Scholar 

  • Goodwin, T.W. 1950. Carotenoids and reproduction.Biol. Rev. 25:391–413.

    Google Scholar 

  • Harashima, K., Ohno, T., Sawachika, T., Hidaka, T., andOhnishi, E. 1972, Carotenoids in orange pupae of the swallowtail,Papilio xuthus.Insect Biochem. 2:29–48.

    Google Scholar 

  • Harashima, K., Nakahara, J., andKato, G. 1976. Papilioerythrinone: A new ketocarotenoid in integuments of orange pupae of a swallowtailPapilio xuthus, and carapaces of a crab,Paralithodes brevipes.Biol. Chem. 40:711–717.

    Google Scholar 

  • Harborne, J.B. 1967. Comparative Biochemistry of the Flavonoids. Academic Press, London.

    Google Scholar 

  • Harborne, J.B. 1973. Phytochemical Methods. Chapman and Hall, London.

    Google Scholar 

  • Harborne, J.B., andMabry, T.J. 1982. The Flavonoids: Advances in Research. Chapman and Hall, London.

    Google Scholar 

  • Havsteen, B. 1983. Flavonoids, a class of natural products of high pharmacological potency.Biochem. Pharmacol. 32:1141–1148.

    PubMed  Google Scholar 

  • Hayashiya, K., Sugimoto, S., andFujimoto, N. 1959. Studies on the pigments of cocoon. III. The qualitative test of the pigments of green cocoon.J. Sericult. Sci. Jpn. 28:27–32.

    Google Scholar 

  • Higgins, L.G., andRiley, N.D. 1975. A Field Guide to the Butterflies of Britain and Europe. Collins, London.

    Google Scholar 

  • Hinton, H.E. 1951. Myrmecophilous Lycaenidae and other Lepidoptera, a summary.Trans. South London Entomol. Nat. Hist. Soc. 1949–1950:111–175.

    Google Scholar 

  • Jay, M., Lebreton, P., andLetoublon, R., 1971. Recherches chimotaxonomiques sur les plantes vasculaires. XXII. Apports récents de la biochimie a la résolution de quelques problèmes systematiques posés par les Legumineuses.Boissiera 19:219–257.

    Google Scholar 

  • Kayser, H. 1982. Carotenoids in insects, pp 195–210,in G. Britton and T.W. Goodwin (eds.). Carotenoid Chemistry and Biochemistry. Pergamon Press, Oxford.

    Google Scholar 

  • Lane, C. 1957. Preliminary note on some insects eaten and rejected by a tame shama (Kittacincla malabarica Gm.), with the suggestion that in certain species of butterflies and moths females are less palatable than males.Entomol. Mon. Mag. 93:172–179.

    Google Scholar 

  • Malicky, H. 1969. Versuch einer Analyse der Okologischen Beziehungen zwischen Lycaeniden (Lepidoptere) und Formiciden (Hymenoptera).Tidjschr. Entomol. 112:213–298.

    Google Scholar 

  • Markham, K.R. 1982. Techniques of Flavonoid Identification. Academic Press, London.

    Google Scholar 

  • Mattson, W.J., Jr. 1980. Herbivory in relation to plant nitrogen content.Annu. Rev. Ecol. Syst. 11:119–161.

    Google Scholar 

  • Morris, S.J., andThomson, R.H. 1963. The flavonoid pigments of the marbled white butterfly (Melanargia galathea Seltz).J. Insect Physiol. 9:391–399.

    Google Scholar 

  • Morris, S.J., andThomson, R.H. 1964. The flavonoid pigments of the small heath butterfly,Coenonympha pamphilus L.J. Insect Physiol. 10:377–383.

    Google Scholar 

  • Pierce, N.E. 1985. Lycaenid butterflies and ants: Selection for nitrogen-fixing and other protein-rich food plants.Am. Nat. 125:888–895.

    Google Scholar 

  • Pierce, N.E., andElgar, M.A. 1985. The influence of ants on host-plant selection byJalmenus evagoras, a myrmecophilous lycaenid butterfly.Behav. Ecol. Sociobiol. 16:209–222.

    Google Scholar 

  • Pierce, N.E., andMead, P.S. 1981. Parasitoids are selective agents in the symbiosis between lycaenid butterfly larvae and ants.Science 211:1185–1187.

    Google Scholar 

  • Pocock, R.I. 1911. On the palatability of some British insects, with notes on the significance of mimetic resemblances.Proc. Zool. Soc. London 11:809–868.

    Google Scholar 

  • Reynaud, J., Jay, M., andRaynaud, J. 1982. Flavonoid glycosides ofLotus corniculatus L. (Leguminosae).Phytochemistry 21:2604–2605.

    Google Scholar 

  • Roeske, C.N., Sieber, J.S., Brower, L.P., andMoffitt, C.M. 1976. Milkweed cardenolides and their processing by monarch butterflies (Danaus plexippus L.)Recent Adv. Phytochem. 10:93–167.

    Google Scholar 

  • Rothschild, M., andAplin, R.T. 1972. Poisonous alkaloids in the body tissues of the garden tiger moth (Arctia caja) and the cinnabar moth (Tyria (= Callimorpha) jacobaeae L.) (Lepidoptera), pp. 579–595,in A. de Vries and E. Kochra (eds.). Toxins of Plant and Animal Origin. Gordon and Breach, London.

    Google Scholar 

  • Shapiro, A., andMasuda, K. 1981. New diet turns butterfly into pest.New Sci. 90:160.

    Google Scholar 

  • Thomson, D.L. 1926. The pigments of butterflies' wings. 1.Melanargia galathea.Biochem. J. 20:73–75.

    Google Scholar 

  • Wilson, A. 1985a. Flavonoid pigments of butterflies in the genusMelanargia.Phytochemistry 24:1685–1991.

    Google Scholar 

  • Wilson, A. 1985b. Flavonoid pigments in marbled white butterfly (Melanargia galathea) are dependent on flavonoid content of larval diet.J. Chem. Ecol. 11:1161–1179.

    Google Scholar 

  • Wilson, A. 1986a. Flavonoid pigments and wing color inMelanargia galathea.J. Chem. Ecol. 12:49–68.

    Google Scholar 

  • Wilson, A. 1986b. Flavonoid pigments in swallowtail butterflies.Phytochemistry. 25:1309–1313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, A. Flavonoid pigments in chalkhill blue (Lysandra coridon Poda) and other lycaenid butterflies. J Chem Ecol 13, 473–493 (1987). https://doi.org/10.1007/BF01880094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01880094

Key Words

Navigation