Skip to main content
Log in

Oscillation of the electric potential of frog skin under the effect of Li+: Experimental approach

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

When a frog skin is used to separate two compartments, and lithium is added to the external medium, transmembrane electric potential oscillations frequently occur. When no external current is imposed, sustained oscillations, with a period of about 10 min, are maintained for several hours. An oscillation of the Na+ influx accompanies the electric oscillation, though the two oscillations are out of phase to a greater or less extent.

Theophyllin promotes a significant decrease in the mean electric potential of the skin, but it does not affect very much the characteristics of the oscillation. Important factors influencing the oscillation are temperature, permeability of the external membrane to lithium, and potassium concentration in the internal medium. No correlation can be detected between oscilation characteristics and skin area. This suggests that the oscillation is of a local nature, possibly originating at the cellular level. Occurrence of macroscopic oscillations implies coupling between local oscillators. Coupling between two epithelia has been studied under diverse conditions. The coupling is of an electrical nature: by varying the value of the coupling resistance, it is possible to control synchronization of the oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubertin, A.M., Hirth, C., Travo, C., Nonnenmacher, H., Kirn, A. 1973. Preparation and properties of an inhibitory extract from FV3 particles.J. Virol. 11:694

    Google Scholar 

  2. Candia, O.A., Chiarandini, D.J. 1973. Transport of lithium and retification by frog skin.Biochim. Biophys. Acta 307:558

    Google Scholar 

  3. Dixon, M., Webb, E.C. 1966. Enzymes. pp. 422–423. Longmans, London

    Google Scholar 

  4. Dousa, T., Hechter, O. 1970. The effect of NaCl and LiCl on vasopressin-sensitive adenyl cyclase.Life Sci. 9:765

    Google Scholar 

  5. Du Bois-Reymond E. 1849. Untersuchungen über die tierische Elektricität 2 ∶ 9 Keimer, Berlin

    Google Scholar 

  6. Finkelstein, A. 1961. Lithium induced oscillations.J. Gen. Physiol. 44:1165

    Google Scholar 

  7. Galeotti, G. 1904. Über die elektromotorischen Kräfte, welche an der Oberfläche tierischer Membranen bei der Berührung mit verschiedenen Elektrolyten zustande kommen.Z. Phys. Chem. 49:542

    Google Scholar 

  8. Garrec, J.P., Jourdan, J., Blanchard, B., Hartmann, A., Lassalles, J.P., Thellier, M. 1977. Echanges de lithium de l'épithélium de grenouille: détermination des flux unidirectionnels à l'aide des isotopes stables6Li et7Li et d'un analyseur ionique.C. R. Acad. Sci. Paris D 285:579

    Google Scholar 

  9. Gershow, S. 1973. Lithium: Its role in psychiatric research and treatment. Plenum Press, New York

    Google Scholar 

  10. Glansdorff, P., Prigogine, I. 1971. Structure, stabilité et fluctuations. Masson, Paris

    Google Scholar 

  11. Greven, K. 1941, Ein Beitrag zum Problem des Ruhestroms der Froschhaut.Pfluegers Arch. 244:365

    Google Scholar 

  12. Harris, C.A., Jenner, F.A. 1968. The inhibition of the action of vasopressin by lithium ions.J. Physiol. (London) 200:59

    Google Scholar 

  13. Hashida, K. 1922. Untersuchungen über das electromotorische Verhalten der Froschhaut.J. Biochem. 1:21

    Google Scholar 

  14. Heller, R. 1968. Manuel de statistique biologique. Gauthier-Villars, Paris

    Google Scholar 

  15. Jard, S. 1971. Le mécanisme d'action de l'hormone antidiurétique.J. Physiol. (Paris) 63:99

    Google Scholar 

  16. Johnson, F.N. 1975. Lithium research and therapy. Academic Press, New York

    Google Scholar 

  17. Koefoed-Johnsen, K., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand 42:298

    Google Scholar 

  18. Leblanc, G. 1972. The mechanism of lithium accumulation in the isolated frog skin epithelium.Pfluegers Arch 337:1

    Google Scholar 

  19. Lindemann, B., Voute, C. 1976. Structure and function of the epithelium.In: Frog Neurobiology. A. handbook. R. Llinás and W. Precht, editors. p. 170. Springer Verlag, New York

    Google Scholar 

  20. Meyer, K.H., Bernfeld, P. 1946. The potentiometric analysis of membrane structure and its applications to living animal membrane.J. Gen. Physiol. 29:353

    Google Scholar 

  21. Nicolis, G., Prigogine, I. 1977. Self-organization in non-equilibrium systems. Wiley Interscience, New York

    Google Scholar 

  22. Nielson, R. 1971. Effect of amphotericin B on the frog skinin vitro. Evidence for outward active potassium transport across the epithelium.Acta Physiol. Scand. 83:106

    Google Scholar 

  23. Orloff, J., Handler, J. 1962. The similarity of effect of vasopressin adenosine 3′–5′-phosphate (cyclic AMP) and theophylline on the toad bladder.J. Clin. Invest. 41:702

    Google Scholar 

  24. Pandey, G.N., Sarkadi, B., Haas, M., Gunn, R.B., Davis, J.M., Tosteton, D.C. 1978. Lithium transport pathways in human red blood cells.J. Gen. Physiol. 72:233

    Google Scholar 

  25. Rajerison, R.M., Montegut, M., Jard, S., Morel, F. 1972. The isolated frog skin epithelium: Permeability characteristics and responsiveness to oxytocin, cyclic AMP and theophylline.Pfluegers Arch. 332:302

    Google Scholar 

  26. Reinach, P.S., Candia, O.A., Siegel, G.J. 1975. Lithium transport across isolated frog skin epithelium.J. Membrane Biol. 25:75

    Google Scholar 

  27. Richelson, E. 1977. Lithium ions entry through the sodium channel of cultured mouse neuroblastoma cells: A biochemical study.Science 4293:1001

    Google Scholar 

  28. Rose, B., Loewenstein, W.R. 1971. Junctional membrane permeability. Depression by substitution of Li for extracellular Na, and by long term lack of Ca and Mg; restoration by cell repolarization.J. Membrane Biol. 5:20

    Google Scholar 

  29. Sarracino, S.M., Dawson, D.C. 1979. Cation selectivity in active transport properties of the turtle colon in the presence of mucosal lithium.J. Membrane Biol. 46:295

    Google Scholar 

  30. Sarrau, J.M., Stelz, T., Ayadi, A., Faict, A. 1974. Adaptation d'un dispositif électronique de régulation par photocouplage, au contrôle d'un potentiel membranaire imposé.C. R. Séances Soc. Biol. 168:102

    Google Scholar 

  31. Singer, I., Franko, E.A. 1972. Abolition of lithium induced ADH unresponsiveness in toad urinary bladder.Clin Res. 20:610

    Google Scholar 

  32. Takenaka, S. 1936. Studies on the quasi periodic oscillations of the electrical potential of frog's skin.Jpn. J. Med. Sci. III Biophys. 4:143

    Google Scholar 

  33. Teorell, T. 1954. Rhythmical potential and impedance variations in isolated frog skin induced by lithium ions.Acta Physiol. Scand. 31:268

    Google Scholar 

  34. Thellier, M., Hartmann, A., Lassalles, J.P., Garrec, J.P. 1980. A tracer method to study unidirectional fluexs of lithium: Application to frog skin.Biochim. Biophys. Acta 598:339

    Google Scholar 

  35. Thellier, M., Lassalles, J.P., Stelz, T., Hartmann, A., Ayadi, A. 1976. Oscillations de potentiel et de courant électriques transepithéliaux sous l'effet du lithium.C. R. Acad. Sci. Paris D 282:2111

    Google Scholar 

  36. Thellier, M., Stelz, T., Wissocq, J.C. 1976. Detection of stable isotopes of lithium or boron with the help of a (n, a) nuclear reaction. Application to the use of6Li as a tracer for unidirectional flux measurements and to the microlocalization of lithium in animal histologic preparations.Biochim. Biophys. Acta 437:604

    Google Scholar 

  37. Ussing, H.H. 1947. Interpretation of the exchange of radiosodium in isolated muscle.Nature (London) 160:262

    Google Scholar 

  38. Ussing, H.H. 1949. The active ion transport through the isolated frog skin in the light of tracer studies.Acta Physiol. Scand. 17:1

    Google Scholar 

  39. Ussing, H.H., Zehran, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110

    Google Scholar 

  40. Zerahn, K. 1955. Studies on the active transport of lithium in the isolated frog skin.Acta Physiol. Scand. 33:347

    Google Scholar 

  41. Ziegler, T.W. 1976. A new model for regulation of sodium transport in high resistance epithelia.Med. Hypoth. 2:85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassalles, JP., Hartmann, A. & Theillier, M. Oscillation of the electric potential of frog skin under the effect of Li+: Experimental approach. J. Membrain Biol. 56, 107–119 (1980). https://doi.org/10.1007/BF01875962

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01875962

Keywords

Navigation