Skip to main content
Log in

General method for the derivation and numerical solution of epithelial transport models

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A general method is presented for the formulation and numerical evaluation of mathematical models describing epithelial transport. The method is based on the principles of conservation of mass, and maintenance of electroneutrality within the cells and bathing solutions. It is therefore independent of the specific membrane transport mechanisms, and can be used to evaluate different models describing arbitrary transport processes (including passive, active and cotransport processes). Detailed numerical methods are presented that allow computation of steady-state and transient responses under open-circuit, current-clamp and voltage-clamp conditions, using a general-purpose laboratory minicomputer. To evaluate the utility of this approach, a specific model is presented that is consistent with the Koefoed-Johnson and Ussing hypothesis of sodium transport in tight epithelia (Acta Physiol. Scand. 42:298–308, 1958). This model considers passive transport of an arbitrary number of permeant solutes, active transport of sodium and potassium, and osmotically induced water transport across the apical and basolateral membranes. Results of the model are compared to published experimental measurements in rabbit urinary bladder epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acton, F.S. 1970. Numerical Methods that Work. p. 51. Harper and Row, New York

    Google Scholar 

  • Carnahan, B., Luther, H.A., Wilkes, J.O. 1969. Applied Numerical Methods. Ch. 6. Wiley and Sons, New York

    Google Scholar 

  • Civan, M.M., Bookman, R.J. 1982. Transepithelial Na+ transport and the intracellular fluids: A computer study.J. Membrane Biol. 65:63–80

    Google Scholar 

  • Civan, M.M., Peterson-Yantorno, K., DiBona, D.R., Wilson, D.F., Erecińska, M. 1983. Bioenergetics of Na+ transport across frog skin: Chemical and electrical measurements.Am. J. Physiol. 245:F691-F700

    PubMed  Google Scholar 

  • Clausen, C., Lewis, S.A., Diamond, J.M. 1979. Impedance analysis of a tight epithelium using a distributed resistance model.Biophys. J. 26:291–318

    PubMed  Google Scholar 

  • Dwight, H.B. 1961. Tables of Integrals and other Mathematical Data. p. 132. Macmillan, New York

    Google Scholar 

  • Forte, T.M., Machen, T.E., Forte, J.G. 1977. Ultrastructural changes in oxyntic cells associated with secretory function: A membrane-recycling hypothesis.Gastroenterology 73:941

    PubMed  Google Scholar 

  • Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8

    PubMed  Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Gluck, S., Cannon, C., Al-Awqati, Q. 1982. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane.Proc. Natl. Acad. Sci. USA 79:4327–4331

    PubMed  Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Hull, T.E., Enright, W.H., Jackson, K.R. 1976. User's guide for DVERK—A subroutine for solving non-stiff ODE's. TR No. 100, Dept. of Computer Science, University of Toronto

  • Ifshin, M.S., Johnson, K.E., Eaton, D.C. 1983. Acid pH and weak acids induce Na−Cl cotransport in the rabbit urinary bladder.J. Membrane Biol. 72:151–164

    Google Scholar 

  • Koefoed-Johnson, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    PubMed  Google Scholar 

  • Lew, V.L., Ferreira, H.G., Moura, T. 1979. The behaviour of transporting epithelial cells. I. Computer analysis of a basic model.Proc. R. Soc. London B 206:53–83

    Google Scholar 

  • Lewis, S.A., Moura, J.M. de 1982. Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder.Nature (London) 297:685–688

    Google Scholar 

  • Lewis, S.A., Diamond, J.M. 1976. Na+ transport by rabbit urinary bladder, a tight epithelium.J. Membrane Biol. 28:1–40

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Clausen, C., Diamond, J.M. 1977. Nystatin as a probe for investigating the electrical properties of a tight epithelium.J. Gen. Physiol. 70:427–440

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41–70

    Google Scholar 

  • Lewis, S.A., Wills, N.K., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps.J. Membrane Biol. 41:117–148

    Google Scholar 

  • Lewis, S.A., Wills, N.K. 1981. Interaction between apical and basolateral membranes during sodium transport across tight epithelia.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 93–107. Raven, New York

    Google Scholar 

  • Lewis, S.A., Wills, N.K. 1983. Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder.J. Physiol. (London) 341:169–184

    Google Scholar 

  • Nelson, M.J., Blaustein, M.P. 1980. Properties of sodium pumps in internally perfused barnacle muscle fibers.J. Gen. Physiol. 75:183–206

    PubMed  Google Scholar 

  • Schultz, S.G. 1980. Basic Principles of Membrane Transport. 144 pp. Cambridge University Press, New York

    Google Scholar 

  • Thomson, S.M., Suzuki, Y., Schultz, S.G. 1981. Current-voltage properties of the active sodium transport pathway across rabbit colon.In: Ion Transport by Epithelia. S.G. Schulz, editor. pp. 47–59. Raven, New York

    Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon.J. Membrane Biol. 39:233–256

    Google Scholar 

  • Wade, J.B., Stetson, D.L., Lewis, S.A. 1981. ADH action: Evidence for a membrane shuttle mechanism.Ann. N.Y. Acad. Sci. 372:106–117

    PubMed  Google Scholar 

  • Welling, L.W., Welling, D.J., Ochs, T.J. 1983. Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule.Am. J. Physiol. 245:F123-F129

    PubMed  Google Scholar 

  • Wills, N.K., Lewis, S.A. 1978. Intracellular Na+ activity as a function of Na+ transport rate across a tight epithelium.Biophys. J. 30:181–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latta, R., Clausen, C. & Moore, L.C. General method for the derivation and numerical solution of epithelial transport models. J. Membrain Biol. 82, 67–82 (1984). https://doi.org/10.1007/BF01870733

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870733

Key Words

Navigation