Skip to main content
Log in

Changes in axon fluorescence during activity: Molecular probes of membrane potential

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The fluorescence of dyes added to squid giant axons was studied during action potentials and voltage-clamp steps. One goal was to find fluorescence changes related to the increases in membrane conductance that underlie propagation. A second goal was to find large changes in fluorescence that would allow optical monitoring of membrane potential in neurons and other cells. Attempts were made to measure fluorescence changes using over 300 different fluorescent molecules and positive results were obtained with more than half of these. No evidence was found that would relate, any of the fluorescence changes to the increases in membrane conductance that accompany depolarization; most, instead, were correlated with the changes in membrane potential. The fluorescence changes of several dyes were relatively large; the largest changes during an action potential were 10−3 of the resting intensity. They could be measured with a signal-to-noise ratio of better than 10∶1 in a single sweep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong, C. M., Binstock, L. 1965. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride.J. Gen. Physiol. 48:859

    PubMed  Google Scholar 

  • Arvanitaki, A., Chalazonitis, N. 1961. Excitatory and inhibitory processes initiated by light and infra-red radiations in single excitable nerve cells (giant ganglion cells ofAplysia).In: Nervous Inhibition. E. Florey, editor. p. 194. Pergamon Press, New York

    Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Ridgway, E. B. 1971. Depolarization and calcium entry in squid giant axons.J. Physiol., Lond. 218:709

    Google Scholar 

  • Bezanilla, F., Horowicz, P. 1974. Fluorescence changes in frog muscle stained with nile blue associated with excitation-contraction coupling.Fed. Proc. 33:1259

    Google Scholar 

  • Beyer, C. F., Craig, L. C., Gibbons, W. A. 1973. Structural requirements for binding and fluorescence enhancement of the fluorescent probe TNS with peptides.Nature, New Biol. 241:78

    Google Scholar 

  • Braddick, H. J. J. 1960. Photoelectric photometry.Prog. Phys. 23:154

    Google Scholar 

  • Brooker, L. G. S., Keyes, G. H., Sprague, R. H., Van Dyke, R. H., Van Lare, E., Van Zandt, G., White, F. L., Cressman, H. W. J., Dent, S. G., Jr., 1951. Color and constitution. X. Absorption of the merocyanines.J. Amer. Chem. Soc. 73:5332

    Google Scholar 

  • Bücher, H., Wiegand, J., Snavely, B. B., Beck, K. H., Kuhn, H. 1969. Electric field induced changes in the optical absorption of a merocyanine dye.Chem. Phys. Lett. 3:508

    Google Scholar 

  • Camejo, G., Villegas, G. M., Barnola, F. V., Villegas, R. 1969. Characterization of two different membrane fractions isolated from the first stellar nerves of the squid,Dosidicus gigas.Biochim. Biophys. Acta 193:247

    PubMed  Google Scholar 

  • Caswell, A. H., Hutchison, J. D. 1971. Visualization of membrane bound cations by a fluorescent technique.Biochem. Biophys. Res. Commun. 42:43

    PubMed  Google Scholar 

  • Chance, B. 1973. Electrochromic responses of merocyanine probes in energy coupling responses of submitochondrial particles (SMP).Fed. Proc. 32:669 (abs.)

    Google Scholar 

  • Cohen, L. B. 1973. Changes in neuron structure during action potential propagation and synaptic transmission.Physiol. Rev. 53:373

    PubMed  Google Scholar 

  • Cohen, L. B., Davila, H. V., Waggoner, A. S. 1971. Changes in axon fluorescence.Biol. Bull., Woods Hole 141:382 (Abstr.)

    Google Scholar 

  • Cohen, L. B., Hille, B., Keynes, R. D. 1969. Light scattering and birefringence changes during activity in the electric organ ofElectrophorus electricus.J. Physiol., Lond. 203:489

    Google Scholar 

  • Cohen, L. B., Hille, B., Keynes, R. D., Landowne, D., Rojas, E. 1971. Analysis of the potential-dependent changes in optical retardation in the squid giant axon.J. Physiol., Lond. 218:205

    Google Scholar 

  • Cohen, L. B., Keynes, R. D., Landowne, D. 1972a. Changes in light scattering that accompany the action potential in squid giant axons: Potential-dependent components.J. Physiol., Lond. 224:701

    Google Scholar 

  • Cohen, L. B., Keynes, R. D., Landowne, D. 1972b. Changes in axon light scattering that accompany the action potential: Current-dependent components.J. Physiol., Lond. 224:727

    Google Scholar 

  • Cohen, L. B., Landowne, D., Shrivastav, B., Ritchie, J. M. 1970. Changes in fluorescence of squid axons during activity.Biol. Bull., Woods Hole 139:418 (abs.)

    Google Scholar 

  • Cohen, L. B., Salzberg, B. M., Davila, H. V. 1973. Changes in fluorescence of a squid giant axon during excitation, a demonstration.Biol. Bull., Woods Hole 145:429 (abs.)

    Google Scholar 

  • Cole, K. S., Curtis, H. J. 1939. Electrical impedance of the squid giant axon during activity.J. Gen. Physiol. 22:649

    Google Scholar 

  • Colour Index, 3rd ed., 1971. Society of Dyers and Colourists and American Association of Textile Chemists and Colorists

  • Colquhoun, D., Henderson, R., Ritchie, J. M. 1972. The binding of labeled tetrodotoxin to non-myelinated nerve fibres.J. Physiol., Lond. 227:95

    Google Scholar 

  • Conti, F., Tasaki, I. 1970. Changes in extrinsic fluorescence in squid axons during voltage-clamp.Science 169:1322

    PubMed  Google Scholar 

  • Conti, F., Tasaki, I., Wanke, E. 1971. Fluorescence signals in ANS-stained squid giant axons during voltage clamp.Biophysik 8:58

    PubMed  Google Scholar 

  • Czikkely, V., Dreizler, G., Försterling, H. D., Kuhn, H., Sondermann, J., Tillmann, P., Wiegand, J. 1969. Lichtabsorption von Farbstoff-Molekülpaaren in Sandwichsystemen aus monomolekularen Schichten.Z. Naturf. 249:1821

    Google Scholar 

  • Davila, H. V., Cohen, L. B., Salzberg B. M., Shrivastav, B. B. 1974. Changes in ANS and TNS fluorescence in giant axons fromLoligo.J. Membrane Biol. 15:29

    Google Scholar 

  • Davila, H. V., Salzberg, B. M., Cohen, L. B., Waggoner, A. S. 1973. A large change in axon fluorescence that provides a promising method for measuring membrane potential.Nature, New Biol. 241:159

    Google Scholar 

  • Dobres, H. L., Moats, W. A. 1968. Qualitative analysis by thin layer chromatography of some common dyes used in biological staining.Stain Tech. 43:27

    Google Scholar 

  • Dunnigan, M. G. 1968. Chromatographic separation and photometric analysis of the components of nile blue sulphate.Stain Tech. 43:243

    Google Scholar 

  • Emrich, H. M., Junge, W., Witt, H. T.. 1969. An artificial indicator for electric phenomena in biological membranes and interfaces.Naturwissenschaften 56:514

    PubMed  Google Scholar 

  • Furusawa, K. 1929. The depolarization of crustacean nerve by stimulation or oxygen want.J. Physiol., Lond. 67:325

    Google Scholar 

  • Goldring, J. M., Blaustein, M. P. 1973. Synaptosome membrane potential changes monitored with a fluorescent probe. Paper presented at the third annual meeting, Society for Neuroscience, San Diego, California.

  • Hallett, M., Schneider, A. S., Carbone, E. 1972. Tetracycline fluorescence as calciumprobe for nerve membrane with some model studies using erythrocyte ghosts.J. Membrane Biol. 10:31

    Google Scholar 

  • Hamer, F. M. 1964. The Cyanine Dyes and Related Compounds. John Wiley & Sons, New York

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol., Lond. 117:500

    Google Scholar 

  • Hodgkin, A. L., Keynes, R. D. 1957. Movement of labelled calcium in squid giant axons.J. Physiol., Lond. 138:253

    Google Scholar 

  • Hoffman, J. F., Laris, P. C. 1974. Determination of membrane potentials in human and amphiuma red blood cells using a fluorescent probe.J. Physiol., Lond. 239:519

    Google Scholar 

  • Keynes, R. D. 1963. Chloride in the squid giant axon.J. Physiol., Lond. 169:690

    Google Scholar 

  • Landowne, D. 1974. Changes in fluorescence of skeletal muscle stained with merocyanine associated with excitation-contraction coupling.J. Gen. Physiol. (In press)

  • Levin, S. V., Rozenthal, D. L., Komissarchik, Y. Y. 1968. Structure changes in the axon membrane on excitation.Biofizika 13:180

    Google Scholar 

  • Lillie, R. D. 1969. H. J. Conn's Biological Stains, 8th Ed. Williams & Wilkins, Baltimore

    Google Scholar 

  • Löhr, W., Wittekind, D. 1973. Vitalfärbung mit Derivaten des Phenothiazins.Z. Zellforsch. 137:125

    PubMed  Google Scholar 

  • Malley, M., Feher, G., Mauzerall, D. 1968. The Stark effect in porphyrins.J. Mol. Spectroscopy 25:544

    Google Scholar 

  • Moore, J. W., Narahashi, T., Shaw, T. I. 1967. An upper limit to the number of sodium channels in nerve membrane?J. Physiol., Lond. 188:99

    Google Scholar 

  • Muralt, A. von. 1971. “Optical spike” during excitation in peripheral nerve.Abstr. 25th Int. Physiol. Congr., Munich. p. 638

  • Nasonov, D. N. 1962. Local Reaction of Protoplasm and Gradual Excitation. Akademiya Nauk SSSR, Moscow-Leningrad. (Translated by the Israel Program for Scientific Translations, Jerusalem.)

    Google Scholar 

  • Platt, J. R. 1962. Electrochromism, a possible change of color producible in dyes by an electric field.J. Chem. Phys. 34:862

    Google Scholar 

  • Pooler, J. 1972. Photodynamic alteration of sodium currents in lobster axons.J. Gen. Physiol. 60:367

    PubMed  Google Scholar 

  • Salzberg, B. M., Davila, H. V., Cohen, L. B. 1973. Optical recording of impulses in individual neurons of an invertebrate central nervous system.Nature 246:508

    PubMed  Google Scholar 

  • Salzberg, B. M., Davila, H. V., Cohen, L. B., Waggoner, A. S. 1972. A large change in axon fluorescence, potentially useful in the study of simple nervous systems.Biol. Bull., Woods Hole 143:475 (abs.)

    Google Scholar 

  • Sims, P. J., Wang, C. H., Waggoner, A. S., Hoffman, J. F. 1974. The cyanine dyes as probes of membrane potential.Biochemistry 13:3315

    PubMed  Google Scholar 

  • Tasaki, I., Carnay, L., Watanabe, A. 1969. Transient changes in extrinsic fluorescence of nerve produced by electric stimulation.Proc. Nat. Acad. Sci. 64:1362

    PubMed  Google Scholar 

  • Tasaki, I., Watanabe, A., Hallett, M. 1972. Fluorescence of squid axon membrane labelled with hydrophobic probes.J. Membrane Biol. 8:109

    Google Scholar 

  • Villegas, G. M. 1969. Electron microscopic study of the giant nerve fiber of the giant squidDosidicus gigas.J. Ultrastruct. Res. 26:501

    PubMed  Google Scholar 

  • West, W., Pearce, S. 1965. The dimeric state of cyanine dyes.J. Phys. Chem. 69:1894

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, L.B., Salzberg, B.M., Davila, H.V. et al. Changes in axon fluorescence during activity: Molecular probes of membrane potential. J. Membrain Biol. 19, 1–36 (1974). https://doi.org/10.1007/BF01869968

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869968

Keywords

Navigation