Skip to main content
Log in

Ion selectivity of epithelial Na channels

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Benos, D.J. 1982. Amiloride: A molecular probe of sodium transport in tissues and cells.Am. J. Physiol. 242:C131-C145

    Google Scholar 

  • Benos, D.J., Mandel, L.J., Simon, S.A. 1980a. Effects of chemical group specific reagents on sodium entry and the amiloride binding site in frog skin: Evidence for separate sites.J. Membrane Biol. 56:149–158

    Google Scholar 

  • Benos, D.J., Mandel, L.J., Simon, S.A. 1980b. Cation selectivity and competition at the sodium entry site in frog skin.J. Gen. Physiol. 76:233–247

    Google Scholar 

  • Cass, A., Finkelstein, A., Krespi, V. 1970. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.J. Gen. Physiol. 56:100–124

    Google Scholar 

  • DiBona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across toad urinary bladder: I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12:101–128

    Google Scholar 

  • Eaton, D.C., Hamilton, K.L. 1987. The amiloride-blockable sodium channel of epithelial tissue.In: Ion Channels. Vol. 1. T. Narahashi, editor. Plenum, New York (in press)

    Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2(2):259–323

    Google Scholar 

  • Eisenman, G., Horn, R. 1983. Ion selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels.J. Membrane Biol. 76:197–225

    Google Scholar 

  • Finn, A.L., Nellans, H. 1972. The kinetics and distribution of potassium in the toad bladder.J. Membrane Biol. 8:189–203

    Google Scholar 

  • Frazier, H.S., Dempsey, E.F., Leaf, A. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:529–543

    Google Scholar 

  • Fuchs, W., Hviid-Larsen, E., Lindemann, B. 1977. Currentvoltage curve of sodium channels and concentration dependence in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Gatzy, J.T., Clarkson, T.W. 1965. The effect of mucosal and serosal solution changes on bioelectric properties of the isolated toad bladder.J. Gen. Physiol. 48:647–671

    Google Scholar 

  • Hamilton, K.L., Eaton, D.C. 1985. Single-channel recordings from amiloride-sensitive epithelial sodium channel.Am. J. Physiol. 249:C200-C207

    Google Scholar 

  • Hamilton, K.L., Eaton, D.C. 1986. Regulation of single sodium channels in renal tissue: A role of sodium homeostasis.Fed. Proc. 45:2713–2717

    Google Scholar 

  • Harms, V., Fanestil, D.D. 1977. Functions of apical membrane of toad urinary bladder: Effects of membrane impermeant reagents.Am. J. Physiol. 233:F607-F614

    Google Scholar 

  • Herrera, F.C., Egea, R., Herrera, A.M. 1971. Movement of lithium across the toad urinary bladder.Am. J. Physiol. 220:1501–1508

    Google Scholar 

  • Hille, B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve.J. Gen. Physiol. 58:599–619

    Google Scholar 

  • Hille, B. 1975. Ionic selectivity of Na and K channels of nerve membranes.In: Membranes-a Series of Advances. Vol. 3, pp. 255–323. G. Eisenman, editor. Marcel Dekker, New York

    Google Scholar 

  • Hillyard, S.D., Zeiske, W., Van Driessche, W. 1982. Poorly selective cation channels in the skin of the larval frog (Stage ≤XIX).Pfluegers Arch. 394:287–293

    Google Scholar 

  • Hviid-Larsen, E., Kristensen, P. 1978. Properties of a conductive cellular chloride pathway in the skin of the toad (Bufobufo).Acta Physiol. Scand. 102:1–21

    Google Scholar 

  • Katz, U. 1978. Changes in ionic conductances and in sensitivity to amiloride during the natural moulting cycle of toad skin (Bufo viridis, L).J. Membrane Biol. 38:1–9

    Google Scholar 

  • Koefoed-Johnson, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    Google Scholar 

  • Läuger, P. 1973. Ion transport through pores: A rate-theory analysis.Biochim. Biophys. Acta 311:423–441

    Google Scholar 

  • Levitt, D.G., Elias, S.R., Hautman, J.M. 1978. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin.Biochim. Biophys. Acta 512:436–451

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Clausen, C., Diamond, J.M. 1977. Nystatin as a probe for investigating the electrical properties of a tight epithelium.J. Gen. Physiol. 70:427–440

    Google Scholar 

  • Lewis, S.A., Wills, N.K. 1983. Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder.J. Physiol. (London) 341:169–184

    Google Scholar 

  • Lindemann, B. 1984. Fluctuation analysis of sodium channels in epithelia.Annu. Rev. Physiol. 46:497–515

    Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294

    Google Scholar 

  • Lindley, B.D., Hoshiko, T. 1964. The effects of alkali metal cations and common anions on the frog skin potential.J. Gen. Physiol. 47:749–771

    Google Scholar 

  • Macknight, A.D.C., Hughes, P.M. 1981. Transepithelial lithium transport and cellular lithium in toad urinary bladder epithelial cells.In: Epithelial Ion and Water Transport. A.D.C. Macknight and J.P. Leader, editors. pp. 147–153. Raven, New York

    Google Scholar 

  • Miller, C. 1982. Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum.Biophys. J. 38:227–230

    Google Scholar 

  • Morf, W.E., Simon, W. 1971. Berechnung von freien hydratationsenthalpien und koordinationszahlen fur kationen aus leicht zuganglichen parametern.Helv. Chim. Acta 54:794–810

    Google Scholar 

  • Olans, L., Sariban-Sohraby, S., Benos, D.J. 1984. Saturation behavior of single amiloride-sensitive Na+ channels in planar lipid bilayers.Biophys. J. 46:831–835

    Google Scholar 

  • Palmer, L.G. 1982. Ion selectivity of the apical membrane Na channel in the toad urinary bladder.J. Membrane Biol. 67:91–98

    Google Scholar 

  • Palmer, L.G. 1984. Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder.J. Membrane Biol. 80:153–165

    Google Scholar 

  • Palmer, L.G. 1985. Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder.J. Membrane Biol. 87:191–199

    Google Scholar 

  • Palmer, L.G. 1986a. The epithelial Na channel.In: New Insights into Cell and Cell Membrane Transport Processes. G. Poste and S.T. Crooke, editors. pp. 327–344. Plenum, New York

    Google Scholar 

  • Palmer, L.G. 1986b. Apical membrane K conductance in the toad urinary bladder.J. Membrane Biol. 92:217–226

    Google Scholar 

  • Palmer, L.G., Frindt, G. 1986a. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule.Proc. Natl. Acad. Sci. USA 83:2767–2770

    Google Scholar 

  • Palmer, L.G., Frindt, G. 1986b. Epithelial Na channels; characterization using the patch clamp technique.Fed. Proc. 45:2708–2712

    Google Scholar 

  • Park, C.S., Kipnowski, J., Fanestil, D.D. 1983. Role of carboxyl group in Na+-entry step at apical membrane of toad urinary bladder.Am. J. Physiol. 245:F707-F715

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: III. Exchangeability of epithelial cellular potassium.J. Membrane Biol. 26:269–286

    Google Scholar 

  • Rosenberg, P.A., Finkelstein, A. 1978. Interactions of ions and water in gramicidin A channels. Streaming potentials across lipid bilayer membranes.J. Gen. Physiol. 72:327–340

    Google Scholar 

  • Sariban-Sohraby, S., Benos, D.J. 1986. The amiloride-sensitive sodium channel.Am. J. Physiol. 250:C175-C190

    Google Scholar 

  • Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., Benos, D. 1984. Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes.Nature (London) 308:80–82

    Google Scholar 

  • Sarracino, S.M., Dawson, D.C. 1979. Cation selectivity in active transport: Properties of the turtle colon in the presence of mucosal lithium.J. Membrane Biol. 46:295–313

    Google Scholar 

  • Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport through frog skin epithelium.Acta Physiol. Scand. 61:484–504

    Google Scholar 

  • Van Driessche, W., Lindemann, B. 1979. Concentration dependence of currents through single sodium-selective pores in frog skin.Nature (London) 282:519–520

    Google Scholar 

  • Zeiske, W., Lindemann, B. 1975. Blockage of Na channels in frog skin by titration with protons and by chemical modification of COO groups.Pfleugers Arc. 355:R71

    Google Scholar 

  • Zeiske, W., Van Driessche, W. 1979. Saturable K+ pathway across the outer border of frog skin (Rana temporaria): Kinetics and inhibition by Cs and other cations.J. Membrane Biol. 47:77–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, L.G. Ion selectivity of epithelial Na channels. J. Membrain Biol. 96, 97–106 (1987). https://doi.org/10.1007/BF01869236

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869236

Key Words

Navigation