Skip to main content
Log in

Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Amino acids enter rabbit jejunal brush border membrane vesicles via three major transport systems: (1) simple passive diffusion; (2) Na-independent carriers; and (3) Na-dependent carriers. The passive permeability sequence of amino acids is very similar to that observed in other studies involving natural and artificial membranes. Based on uptake kinetics and cross-inhibition profiles, at least two Na-independent and three Na-dependent carrier-mediated pathways exist. One Na-independent pathway, similar to the classical L system, favors neutral amino acids, while the other pathway favors dibasic amino acids such as lysine. One Na-dependent pathway primarily serves neutrall-amino acids including 2-amino-2-norbornanecarboxylic acid hemihydrate (BCH), but not β-alanine or α-methylaminoisobutyric acid (MeAIB). Another Na-dependent route favors phenylalanine and methionine, while the third pathway is selective for imino acids and MeAIB. Li is unable to substitute for Na in these systems. Cross-inhibition profiles indicated that none of the Na-dependent systems conform to classical A or ACS paradigms. Other notable features of jejunal brush border vesicles include (1) no β-alanine carrier, and (2) no major proline/glycine interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akedo, H., Christensen, H.N. 1962. Nature of insulin action on amino acid uptake by the isolated diaphragm.J. Biol. Chem. 237:118–122

    PubMed  Google Scholar 

  • Christensen, H.N. 1964. Relations in the transport of β-alanine and the α-amino acids in the Ehrlich cell.J. Biol. Chem. 239:3584–3589

    PubMed  Google Scholar 

  • Christensen, H.N. 1969. Some special kinetic problems of transport.Adv. Enzymol. 32:1–20

    PubMed  Google Scholar 

  • Christensen, H.N. 1975. Biological Transport. W.A. Benjamin, Inc., Reading, Mass.

    Google Scholar 

  • Christensen, H.N. 1979. Exploiting amino acid structure to learn about membrane transport.Adv. Enzymol. 49:41–101

    PubMed  Google Scholar 

  • Christensen, H.N., Antonioli, J.A. 1969. Cationic amino acid transport in the rabbit reticulocyte. Na+-dependent inhibition of Na+-independent transport.J. Biol. Chem. 244:1497–1504

    PubMed  Google Scholar 

  • Christensen, H.N., Handlogten, M.E., Lam, I., Tager, H.S., Zand, R. 1969. A bicyclic amino acid to improve discriminations among transport systems.J. Biol. Chem. 244:1510–1520

    PubMed  Google Scholar 

  • Christensen, H.N., Liang, M. 1966. Transport of diamino acids into the Ehrlich cell.J. Biol. Chem. 214:5542–5551

    Google Scholar 

  • Christensen, H.N., Liang, M., Archer, E.G. 1967. A distinct Na+-requiring transport system for alanine, serine, cystine, and similar amino acids.J. Biol. Chem. 242:5237–5246

    PubMed  Google Scholar 

  • Christensen, H.N., Oxender, D.L., Liang, M., Vatz, K.A. 1965. The use of N-methylation to direct the route of mediated transport of amino acids.J. Biol. Chem. 240:3609–3616

    PubMed  Google Scholar 

  • Crane, R.K. 1960. Intestinal absorption of sugars.Physiol. Rev. 40:789–825

    PubMed  Google Scholar 

  • Crane, R.K. 1962. Hypothesis of mechanisms of intestinal active transport of sugars.Fed. Proc. 21:891–895

    PubMed  Google Scholar 

  • Diamond, J.M., Wright, E.M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581–646

    PubMed  Google Scholar 

  • Hagihira, H., Wilson, T.H., Lin, E.C.C. 1962. Intestinal transport of certain N-substituted amino acids.Am. J. Physiol. 203:637–640

    PubMed  Google Scholar 

  • Hajjar, J.J., Curran, P.F. 1970. Characteristics of the amino acid transport system in the mucosal border of rabbit ileum.J. Gen. Physiol. 56:637–691

    Google Scholar 

  • Jacquez, J.A., Sherman, J.H., Terris, J. 1970. Temperature dependence of amino acid transport in Ehrlich ascites cells: With results which bear on the A-L distinction.Biochim. Biophys. Acta 203:150–166

    PubMed  Google Scholar 

  • Kessler, M., Acuto, O., Storelli, C., Murer, H., Muller, M., Semenza, G. 1978. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties ofd-glucose and choline transport systems.Biochim. Biophys. Acta 506:136–154

    PubMed  Google Scholar 

  • Kilberg, M.S., Christensen, H.N., Handlogten, M.E. 1979. Cysteine as a system-specific substrate for transport system ASC in rat hepatocytes.Biochem. Biophys. Res. Commun. 88:744–751

    PubMed  Google Scholar 

  • Klein, R.A., Moore, M.J., Smith, M.W. 1971. Selective diffusion of neutral amino acids across lipid bilayers.Biochim. Biophys. Acta 233:420–433

    PubMed  Google Scholar 

  • Lever, J.E. 1980. The use of membrane vesicles in transport studies.CRC Crit. Rev. Biochem. 7:187–246

    PubMed  Google Scholar 

  • Lin, E.C.C., Hagihira, H., Wilson, T.H. 1962. Specificity of the transport system for neutral amino acids in the hamster intestine.Am. J. Physiol. 202:919–925

    PubMed  Google Scholar 

  • McClellan, W.M., Schafer, J.A. 1973. Transport of amino-acid analog, 2-aminobicyclo(2,2)-heptane-2-carboxylic acid, by Ehrlich ascites tumor cells.Biochim. Biophys. Acta 311:462–475

    PubMed  Google Scholar 

  • Mircheff, A.K., Kippen, I., Hirayama, B., Wright, E.M. 1982. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.J. Membrane Biol. 64:113–122

    Google Scholar 

  • Mircheff, A.K., Os, C.H. van, Wright, E.M. 1980. Pathways for alanine transport in intestinal basal membrane vesicles.J. Membrane Biol. 52:83–92

    Google Scholar 

  • Mircheff, A.K., Wright, E.M. 1976. Analytical isolation of plasma membranes of intestinal epithelial cells. Identification of Na, K-ATPase rich membranes and the distribution of enzyme activities.J. Membrane Biol. 28:309–333

    Google Scholar 

  • Mitchell, M.A., Levin, R.J. 1981. Amino acid absorption in jejunum and ileum in vivo — a kinetic comparison of function on surface area and regional bases.Experientia 37:265–266

    PubMed  Google Scholar 

  • Munck, B.G. 1966. Amino acid transport by the small intestine of the rat. The existance and specificity of the transport mechanisms of imino acids and its relation to the transport of glycine.Biochim. Biophys. Acta 120:97–103

    PubMed  Google Scholar 

  • Munck, B.G. 1980. Lysine transport across the small intestine. Stimulating and inhibitory effects of neutral amino acids.J. Membrane Biol. 53:45–53

    Google Scholar 

  • Munck, B.G. 1981. Intestinal absorption of amino acids.In: Physiology of the Gastrointestinal Tract. L.R. Johnson, J. Christensen, M.L. Grossman, E.D. Jacobson, and S.G. Schultz, editors. pp. 1097–1122, Raven Press, New York

    Google Scholar 

  • Munck, B.G., Schultz, S.G. 1969. Lysine transport across isolated rabbit ileum.J. Gen. Physiol. 53:157–182

    PubMed  Google Scholar 

  • Newey, H., Smyth, D.H. 1964. The transfer system for neutral amino acids in the rat small intestine.J. Physiol. (London) 170:328–343

    Google Scholar 

  • Oxender, D.L., Christensen, H.N. 1963. Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell.J. Biol. Chem. 238:3686–3699

    PubMed  Google Scholar 

  • Paterson, J.Y.F., Sepulveda, F.V., Smith, M.W. 1979. Two-carrier influx of neutral amino acids into rabbit ileal mucosa.J. Physiol. (London) 292:339–350

    Google Scholar 

  • Paterson, J.Y.F., Smith, M.W., Sepulveda, F.V. 1980. Animal variation in alanine uptake by rabbit ileal mucosa.Biochim. Biophys. Acta 598:184–188

    PubMed  Google Scholar 

  • Preston, R.L., Schaffer, J.F., Curran, P.F. 1974. Structure-affinity relationships of substrates for the neutral amino acid transport system in rabbit ileum.J. Gen. Physiol. 64:443–467

    PubMed  Google Scholar 

  • Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J., Crane, R.K. 1973. Purification of the human intestinal brush border membrane.Biochim. Biophys. Acta 323:98–112

    PubMed  Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637–718

    PubMed  Google Scholar 

  • Schultz, S.G., Markscheid-Kaspi, L. 1971. Competitive interactions betweenl-alanine andl-phenylalanine in rabbit ileum.Biochim. Biophys. Acta 241:857–860

    PubMed  Google Scholar 

  • Segal, I.H. 1975. Enzyme Kinetics. John Wiley and Sons, New York

    Google Scholar 

  • Sepulveda, F.V., Smith, M.W. 1978. Discrimination between different entry mechanisms for neutral amino acids in rabbit ileal mucosa.J. Physiol. (London) 282:73–90

    Google Scholar 

  • Silbernagl, S., Foulkes, E.C., Deetjen, P. 1975. Renal handling of amino acids.Rev. Physiol. Biochem. Pharmacol. 74:105–167

    PubMed  Google Scholar 

  • Silverman, M., Turner, R.J. 1980. Renal proximal tubule.In: Biomembranes. L.A. Manson, editor. Vol. 10, pp. 1–50. Plenum Press, New York

    Google Scholar 

  • Smith, M.W., Sepulveda, F.V. 1979. Sodium dependence of neutral amino acid uptake into rabbit ileum.Biochim. Biophys. Acta 555:374–378

    PubMed  Google Scholar 

  • Spears, G., Sneyd, J.G.T., Loten, E.G. 1971. A method for deriving kinetic constants for two enzymes acting on the same substrate.Biochem. J. 125:1149–1151

    PubMed  Google Scholar 

  • Spencer, R.P., Bow, T.M., Markulis, M.A. 1962. Amino group requirements for in vitro intestinal transport of amino acids.Am. J. Physiol. 202:171–173

    PubMed  Google Scholar 

  • Stevens, B.R. 1980. The role of sulfhydryl groups in alanine transport by lyophilized brush border membrane vesicles. Ph. D. Dissertation. Illinois State University, Normal

    Google Scholar 

  • Stevens, B.R., Wright, S.H., Hirayama, B., Ross, H.J., Gunther, R., Nord, E., Kippen, I., Wright, E.M. 1982. Organic and inorganic solute transport in renal and intestinal membrane vesicles preserved in liquid nitrogen.J. Membrane Biochem. (in press)

  • Tager, H.S., Christensen, H.N. 1971. Transport of the four isomers of 2-aminonorborane-2-carboxylic acid inEscherichia coli.J. Biol. Chem. 246:7572–7580

    PubMed  Google Scholar 

  • Ullrich, K.J., Runrich, G., Kloss, S. 1974. Sodium-dependence of the amino acid transport in the proximal convolution of the rat kidney.Pfluegers. Arch. 351:49–60

    Google Scholar 

  • Wilson, P.D., Wheeler, K.P. 1973. Permeability of phospholipid vesicles to amino acids.Biochem. Soc. Trans. 1:369–372

    Google Scholar 

  • Young, J.D., Ellory, J.C. 1977. Red. cell amino acid transport.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors, pp. 301–325. Academic Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, B.R., Ross, H.J. & Wright, E.M. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J. Membrain Biol. 66, 213–225 (1982). https://doi.org/10.1007/BF01868496

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868496

Key words

Navigation