Skip to main content
Log in

Non-cooperative two-person games in biology: A classification

  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

This article compares evolutionary equilibrium notions with solution concepts in rational game theory. Both static and dynamic evolutionary game theory are treated. The methods employed by dynamic theory, so-called “game dynamics”, could be discovered to be relevant for rational game theory also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abakuks A (1980) Conditions for evolutionary stable strategies. J Appl Prob 17:559–562

    Google Scholar 

  • Aigner M (1979) Combinatorial theory. Springer, Berlin Heidelberg New York (Grundl d math Wiss i Einzeld Bd 234)

    Google Scholar 

  • Akin E (1980) Domination or equilibrium. Math Biosci 50:239–250

    Google Scholar 

  • Akin E, Hofbauer J (1982) Recurrence of the unfit. Math Biosci 61:51–63

    Google Scholar 

  • Auslander D, Guckenheimer J, Oster G (1978) Random evolutionarily stable strategies. Theor Pop Biol 13:276–293

    Google Scholar 

  • Axelrod R (1981) The emergence of cooperation among egoists. Am political Sci Rev 75:306–318

    Google Scholar 

  • Bishop DT, Cannings C (1976) Models of animal conflicts. Adv Appl Prob 6:616–621

    Google Scholar 

  • Bishop DT, Cannings D (1978) A generalized war of attrition. J theor Biol 70:85–124

    Google Scholar 

  • Bomze IM (1983) Lotka-Volterra equation and replicator dynamics: a two-dimensional classification. Biol Cybern 48:201–211

    Google Scholar 

  • Bomze IM, Schuster P, Sigmund K (1983) The role of Mendelian genetics in strategic models on animal conflicts. J theor Biol 101:19–38

    Google Scholar 

  • Brown JS, Sanderson MJ, Michod RE (1982) Evolution of social behaviour by reciprocation. J theor Biol 99:319–339

    Google Scholar 

  • Van Damme EEC (1983) Refinements of the Nash equilibrium concept. Springer, Berlin Heidelberg New York (Lecture Notes in Economics and Mathematical Systems, vol 219)

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science, Wash. 156:477–488

    Google Scholar 

  • Harsanyi JC (1973a) Games with randomly disturbed payoffs: a new rationale for mixed strategy equilibrium points. Int J Game Theory 2:1–23

    Google Scholar 

  • Harsanyi JC (1973b) Oddness of the number of equilibrium points: a new proof. Int J Game Theory 2:235–250

    Google Scholar 

  • Hines WGS (1980) An evolutionarily stable strategy model for randomly mating diploid populations. J theor Biol 87:379–384

    Google Scholar 

  • Hines WGS (1982) Strategy stability in complex randomly mating diploid populations. J Appl Prob 19:653–659

    Google Scholar 

  • Hofbauer J (1981) On the occurrence of limit cycles in the Volterra-Lotka differential equation. J Nonlinear Anal 5:1003–1007

    Google Scholar 

  • Hofbauer J (1984) A difference equation model for the hypercycle. Siam J Appl Math 44:762–772

    Google Scholar 

  • Hofbauer J, Sigmund K (1984) Evolutionstheorie und dynamische Systeme. Mathematische Aspekte der Selektion. Paul Parey, Berlin Hamburg

    Google Scholar 

  • Hofbauer J, Schuster P, Sigmund K (1979) A note on evolutionary stable strategies and game dynamics. J theor Biol 81:609–612

    Google Scholar 

  • Hofbauer J, Schuster P, Sigmund K (1982) Game dynamics in Mendelian populations. Biol Cybern 43:51–57

    Google Scholar 

  • Hofbauer J, Schuster P, Sigmund K, Wolff R (1980) Dynamical systems under constant organisation II: Homogeneous growth functions of degreep=2. Siam J Appl Math C38:282–304

    Google Scholar 

  • Losert V, Akin E (1983) Dynamics of games and genes: discrete versus continuous time. J Math Biol 17:241–251

    Google Scholar 

  • Maynard Smith J (1981) Will a sexual population evolve to anESS? Am Nat 117:1015–1018

    Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature, Lond 246:15–18

    Google Scholar 

  • Myerson RB (1978) Refinements of the Nash equilibrium concept. Int J Game Theory 7:73–80

    Google Scholar 

  • Nash JF (1951) Non-cooperative games. Ann of Math 54:286–295

    Google Scholar 

  • Norman MF (1981) Sociobiological variations on a Mendelian theme. In: Grossberg S (ed) Mathematical Psychology and Psychophysiology. SIAM-AMS Proceedings, vol 13:187–196

  • Okada A (1981) On stability of perfect equilibrium points. Int J Game Theory 10:67–73

    Google Scholar 

  • Parthasarathy T, Raghavan TES (1971) Some topics in two-person games. In: Bellman R (ed) Modern analytic and computational methods in science and mathematics, vol 22. American Elsevier, New York

    Google Scholar 

  • Riechert SE, Hammerstein P (1983) Game theory in the ecological context. Ann Rev Ecol Syst 14:377–409

    Google Scholar 

  • Rothstein SI (1980) Reciprocal altruism and kin selection are not clearly separable phenomena. J theor Biol 87:255–261

    Google Scholar 

  • Schuster P, Sigmund K (1981) Coyness, philandering and stable strategies. Anim Behav 29:186–192

    Google Scholar 

  • Schuster P, Sigmund K (1983) Replicator dynamics. J theor Biol 100:533–538

    Google Scholar 

  • Schuster P, Sigmund K, Wolff R (1978) Dynamical systems under constant organization I: Topological analysis of a family of non-linear differential equations. Bull Math Biophys 40:743–769

    Google Scholar 

  • Schuster P, Sigmund K, Hofbauer J, Wolff R (1981a) Selfregulation of behaviour in animal societies I: Symmetric contests. Biol Cybern 40:1–8

    Google Scholar 

  • Schuster P, Sigmund K, Hofbauer J, Wolff R (1981b) Selfregulation of behaviour in animal societies II: Games between two populations without selfinteraction. Biol Cybern 40:9–15

    Google Scholar 

  • Schuster P, Sigmund K, Hofbauer J, Wolff R, Gottlieb R, Merz P (1981c) Selfregulation of behaviour in animal societies III: Games between two populations with selfinteraction. Biol Cybern 40:17–25

    Google Scholar 

  • Taylor PD (1979) Evolutionarily stable strategies with two types of player. J Appl Prob 16:76–83

    Google Scholar 

  • Treisman M (1977) The evolutionary restriction of aggression within a species: a game theory analysis. J Math Psychol 16:167–203

    Google Scholar 

  • Trivers RL (1971) The evolution of reciprocal altruism. Q Rev Biol 46:35–57

    Google Scholar 

  • Wu Wen-Tsün, Jiang Jia-He (1962) Essential equilibrium points ofn-person non-cooperative games. Sci Sinica 11:1370–1372

    Google Scholar 

  • Zeeman EC (1980) Population dynamics from game theory. In: Global theory of dynamical systems. Nitecki Z, Robinson C (eds) Springer, Berlin Heidelberg New York (Lecture Notes in Mathematics vol 819)

    Google Scholar 

  • Zeeman EC (1981) Dynamics of the evolution of animal conflicts. J theor Biol 89:249–270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomze, I.M. Non-cooperative two-person games in biology: A classification. Int J Game Theory 15, 31–57 (1986). https://doi.org/10.1007/BF01769275

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01769275

Keywords

Navigation