Skip to main content
Log in

Combined design of structures and controllers for optimal maneuverability

  • Originals
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

This paper treats the problem of the combined design of structure/control systems for achieving optimal maneuverability. A maneuverability index which directly reflects the time required to perform a given maneuver or set of maneuvers is introduced. By designing the flexible appendages of a spacecraft, its maneuverability is optimized under the constraints of structural properties, and of the postmaneuver spill-over being within a specified bound. The spillover reduction is achieved by making use of an appropriate control design model. The distributed parameter design problem is approached using assumed shape functions and finite element analysis with dynamic reduction. Characteristics of the problem and problem solving procedures have been investigated. Adaptive approximate design methods have been developed to overcome computational difficulties. It is shown that the global optimal design may be obtained by tuning the natural frequencies of the spacecraft to satisfy specific constraints. We quantify the difference between a lower bound to the objective function associated with the original problem and the estimate obtained from the modified problem as the index for the adaptive refinement procedure. Numerical examples show that the results of the optimal design can provide substantial improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Athanas, M.; Falb, P. 1966:Optimal control. New York: MacGraw-Hill

    Google Scholar 

  • Barbieri, E.; Ozguner, U. 1988: Rest-to-rest slewing of flexible structures in minimum time.Proc. IEEE Conf. Decision and Control (held in Austin, TX), pp. 1633–1638

  • Ben-Asher, J.; Burns, J.A.; Cliff, E.M. 1987: Time optimal slewing of flexible spacecraft.Proc. IEEE Conf. Decision and Control (held in Los Angeles, CA), pp. 524–528

  • Bendsøe, M.P; Olhoff, N.; Taylor, J.E. 1987: On the design of structure and controls for optimal performance of actively controlled flexible structures.Mech. Struct. & Mach. 51, 265–295

    Google Scholar 

  • Bodden, D.S.; Junkins, J.L. 1985: Eigenvalue optimization algorithms for structure/controller design iterations.J. Guidance, Control and Dynamics 8, 697–706

    Google Scholar 

  • Breakwell, J.A. 1981: Optimal feedback slewing of flexible spacecraft.J. Guidance, Control and Dynamics 4, 472–479

    Google Scholar 

  • Doyle, J.C. 1987: Guaranteed margins for LQG regulators.IEEE Trans. Auto. Control AC-23, 756–757

    Google Scholar 

  • Doyle, J.C.; Stein, G. 1979: Robustness with observer.IEEE Trans. Auto. Control AC-24, 607–611

    Google Scholar 

  • Fetterman, T.L.; Noor, A.K. 1987: Computational procedures for evaluating the sensitivity derivatives of vibration frequencies and eigenmodes of framed structures.NASA Contractor Report 4099

  • Fujii, H.; Ishijima, S. 1989: Mission-function control for slew maneuver of a flexible space structure.J. Guidance, Control and Dynamics 12, 858–865

    Google Scholar 

  • Garcia, C.B.; Zangwill, W.I. 1981:Pathways to solutions, fixed points and equilibria. New Jersey: Prentice-Hall

    Google Scholar 

  • Haftka, R.T.; Kamat, M.P. 1985:Elements of optimal structural design. Dordrecht: Kluwer

    Google Scholar 

  • Haftka, R.T.; Martinovic Z.N.; Hallauer, W.L. Jr. 1985: Enhanced vibration controllability by minor structural modification.AIAA J. 23, 1260–1266

    Google Scholar 

  • Hale, A.L.; Lisowski, R.J. 1985: Characteristic elastic systems of time-limited optimal maneuvers.J. Guidance, Control and Dynamics 8, 628–636

    Google Scholar 

  • Hale, A.L.; Lisowski, R.J.: Optimal simultaneous structural and control design of maneuvering flexible spacecraft.Proc. 4th VPI & SU/AIAA

  • Hale, A.L.; Lisowski, R.J.; Dahl, W.E. 1984: Optimal simultaneous structural and control design of maneuvering flexible spacecraft.J. Guidance, Control and Dynamics 8, 86–93

    Google Scholar 

  • Hartman, P. 1982:Ordinary differential equations. Boston: Birkhauser

    Google Scholar 

  • Khot, N.S. 1988: An integrated approach to the minimum weight and optimum control design of space structures. In:Large space structures: dynamics and control, pp. 355–363. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Khot, N.S.; Eastep, F.E.; Venkayya, V.B. 1985a: Optimal structural modifications to enhance the optimal active vibration control of large flexible structures.AIAA Paper, 85-0627

  • Khot, N.S.; Eastep, F.E.; Venkayya, V.B. 1985b: Simultaneous optimal structural/control modifications to enhance the vibration control of large of a large flexible structure.AIAA Paper, 85-1925

  • Khot, N.S.; Oz, H.; Grandhi, R.V.; Eastep, F.E.; Venkayya, V.B. 1988: Optimal structural design with control gain norm constraint.AIAA J. 26, 604–611

    Google Scholar 

  • Lehtomaki, N.A.; Sandell, N.R.; Athanas, M. 1981: Robustness results in linear quadratic Gaussian based multivariable control design.IEEE Trans. Auto. Control AC-26, 75–93

    Google Scholar 

  • Lim, K.B.; Junkins, J.L. 1989: Robustness optimization of structural and controller parameters.J. Guidance, Control and Dynamics 12, 89–96

    Google Scholar 

  • Luenberger, D.G. 1984:Linear and nonlinear programming. New York: Addison-Wesley

    Google Scholar 

  • Lust, R.V.; Schmit, L.A. 1988: Control-augmented structural synthesis.AIAA J. 26, 86–95

    Google Scholar 

  • Meirovitch, L. 1967:Analytical methods in vibrations. New York: MacMillan

    Google Scholar 

  • Onoda, J.; Haftka, R.T. 1987: An aproach to structural/control simultaneous optimization for large flexible spacecraft.AIAA J. 25, 1133–1138

    Google Scholar 

  • Safanov, M.G.; Athanas, M. 1977: Gain and phase margin for multiloop LQG regulators.IEEE Trans. Auto. Control AC-22, 173–179

    Google Scholar 

  • Singh, G.; Kabamba, P.T.; McClamroch, N.H. 1989: Planar, time-optimal, rest-to-rest slewing maneuvers of flexible spacecraft.J. Guidance, Control and Dynamics 12, 71–81

    Google Scholar 

  • Thompson, R.C.; Junkins, J.L.; Vadali S.R. 1989: Near-minimum time open-loop slewing of flexible vehicles.J. Guidance, Control and Dynamics 12, 82–88

    Google Scholar 

  • Thompson, R.C.; Junkins, J.L.; Vadali S.R. 1990: Near-minimum time close-loop slewing of flexible spacecraft.J. Guidance, Control and Dynamics 13, 57–65

    Google Scholar 

  • Turner, J.D.; Chun, H.M. 1984: Optimal distributed control of flexible spacecraft during a large-angle maneuver.J. Guidance, Control and Dynamics 7, 257–264

    Google Scholar 

  • Vadali, S.R. 1986: Variable-structure control of spacecraft largeangle maneuvers.J. Guidance, Control and Dynamics 9, 235–239

    Google Scholar 

  • Van der Velde, W.E.; He, J. 1983: Design of space structure control systems using on-off thrusters.J. Guidance, Control and Dynamcis 6, 53–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, J., Kabamba, P. & Taylor, J. Combined design of structures and controllers for optimal maneuverability. Structural Optimization 3, 214–230 (1991). https://doi.org/10.1007/BF01744056

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01744056

Keywords

Navigation