Skip to main content
Log in

Mg-ATPase activity and motility of native thick filaments isolated from the anterior byssus retractor muscle ofMytilus edulis

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

A method for isolating native thick filaments from the anterior byssus retractor muscle (ABRM) ofMytilus edulis is described. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the isolated thick filament preparation contained mainly paramyosin and myosin but almost no actin. Electron microscopy of negatively stained preparations showed that the isolated thick filaments were tapered at both ends and of various sizes, in the range 5–31 Μm in length and 51–94nm in width in the central region. Central bare zones were observed in the smaller filaments, but were not clearly seen in the larger filaments. Mg-ATPase activity of the isolated thick filaments was activated by skeletal muscle F-actin in a Ca2+-dependent manner. The maximal activity was about 20 nmol min−1 mg−1 thick filaments (20‡ C, pH7.0). Motility of the thick filaments attached to latex beads (diameter, 2 Μm) was also studied using the native actin cables of the freshwater alga,Chara. In the presence of Mg-ATP and Ca2+, the beads moved along the actin cables at a maximal velocity of about 1 Μm s−1. In the absence of Ca2+, almost no movement was observed. These results show that the isolated thick filaments are structurally intact and retain the essential mechanochemical characteristics of the ABRM myosin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, B. C. &Lowy, J. (1958) Contraction in molluscan smooth muscle.J. Physiol., Lond. 141, 385–97.

    Google Scholar 

  • Achazi, R. K. (1979) Phosphorylation of molluscan paramyosin.Pflügers Arch. 379, 197–201.

    Google Scholar 

  • Castellani, L. &Cohen, C. (1987a) Myosin rod phosphorylation and the catch state of molluscan muscles.Science 235, 334–7.

    PubMed  Google Scholar 

  • Castellani, L. &Cohen, C. (1987b) Rod phosphorylation favors folding in a catch muscle myosin.Proc. natn. Acad. Sci. USA 84, 4058–62.

    Google Scholar 

  • Castellani, L., Vibert, P. &Cohen, C. (1983) Structure of myosin/paramyosin filaments from a molluscan smooth muscle.J. molec. Biol. 167, 853–72.

    PubMed  Google Scholar 

  • Chantler, P. D., Sellers, J. R. &Szent-Györgyi, A. G. (1981) Cooperativity in scallop myosin.Biochemistry 20, 210–6.

    PubMed  Google Scholar 

  • Cooley, L. B., Johnson, W. H. &Krause, S. (1979) Phosphorylation of paramyosin and its possible role in the catch mechanism.J. biol. Chem. 254, 2195–8.

    PubMed  Google Scholar 

  • Cornelius, F. &Lowy, J. (1978) Tension-length behaviour of a molluscan smooth muscle related to filament organisation.Acta physiol. scand. 102, 167–80.

    PubMed  Google Scholar 

  • Eisenberg, E. &Moos, C. (1970) Actin activation of heavy meromyosin adenosine triphosphatase. Dependence on adenosine triphosphate and actin concentrations.J. biol. Chem. 245, 2451–6.

    PubMed  Google Scholar 

  • Goldstein, D. A. (1979) Calculation of the concentrations of free cations and cation-ligand complexes in solutions containing multiple divalent cations and ligands.Biophys. J. 26, 235–42.

    PubMed  Google Scholar 

  • Hardwicke, P. M. D. &Hanson, J. (1971) Separation of thick and thin myofilaments.J. molec. Biol. 59, 509–16.

    PubMed  Google Scholar 

  • Harada, Y., Noguchi, A., Kishino, A. &Yanagida, T. (1987) Sliding movement of single actin filaments on one-headed myosin filaments.Nature, Lond. 326, 805–8.

    Google Scholar 

  • Ishii, N. &Takahashi, K. (1982) Length-tension relation of single smooth muscle cells isolated from the pedal retractor muscle ofMytilus edulis.J. Musc. Res. Cell Motility 3, 25–38.

    Google Scholar 

  • Ishii, N. &Takahashi, K. (1983) Polarity of myofilaments in molluscan smooth muscle.Cell Tiss. Res. 234, 533–45.

    Google Scholar 

  • Johnson, W. H. &Thompson, V. P. (1979) Evidence for direct large filament interactions in molluscan catch muscles. InMotility in Cell Function (edited byPepe, F. A., Sanger, J. W. &Nachmias, V. T.), pp. 467–9. New York: Academic Press.

    Google Scholar 

  • Kendrick-Jones, J. &Scholey, J. M. (1981) Myosin-linked regulatory systems.J. Musc. Res. Cell Motility 2, 347–72.

    Google Scholar 

  • Kohama, K. &Shimmen, T. (1985). Inhibitory Ca2+-control of movement of beads coated withPhysarum myosin along actin-cables inChara internodal cells.Protoplasma 129, 88–91.

    Google Scholar 

  • Kron, S. J. &Spudich, J. A. (1986) Fluorescent actin filaments move on myosin fixed to a glass surface.Proc. natn. Acad. Sci. USA 83, 6272–6.

    Google Scholar 

  • Kuroda, K. (1983) Cytoplasmic streaming in characean cells cut open by microsurgery.Proc. Jpn. Acad. Ser. B 59, 126–30.

    Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature, Lond. 227, 680–5.

    Google Scholar 

  • Lanzetta, P. A., Alvarez, L. J., Reinach, P. S. &Candia, O. A. (1979) An improved assay for nanomole amounts of inorganic phosphate.Analyt. Biochem. 100, 95–7.

    PubMed  Google Scholar 

  • Lehman, W. &Szent-Györgyi, A. G. (1975). Regulation of muscular contraction. Distribution of actin control and myosin control in the Animal Kingdom.J. gen. Physiol. 66, 1–30.

    PubMed  Google Scholar 

  • Levine, R. J. C., Elfvin, M., Dewey, M. M. &Walcott, B. (1976) Paramyosin in invertebrate muscles. II. Content in relation to structure and function.J. Cell Biol. 71, 273–9.

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. &Randall, R. J. (1951) Protein measurement with the Folin phenol reagent.J. biol. Chem. 193, 265–75.

    PubMed  Google Scholar 

  • Lowy, J. &Hanson, J. (1962) Ultrastructure of invertebrate smooth muscles.Physiol. Rev. 42, 34–47.

    Google Scholar 

  • Moos, C. (1973) Actin activation of heavy meromyosin and subfragment-1 ATPases; steady state kinetics studies.Cold Spring Harb. Symp. quant. Biol. 37, 137–43.

    Google Scholar 

  • Nonomura, Y. (1974). Fine structure of the thick filament in molluscan catch muscle.J. molec. Biol. 88, 445–55.

    PubMed  Google Scholar 

  • Pardee, J. D. &Spudich, J. A. (1982) Purification of muscle actin.Meth. Enzym. 85, 164–81.

    PubMed  Google Scholar 

  • Rüegg, J. C. (1971) Smooth muscle tone.Physiol. Rev. 51, 201–48.

    PubMed  Google Scholar 

  • Sellers, J. R., Spudich, J. A. &Sheetz, M. P. (1985) Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments.J. Cell Biol. 101, 1897–902.

    PubMed  Google Scholar 

  • Sheetz, M. P., Chasan, R. &Spudich, J. A. (1984) ATP-dependent movement of myosinin vitro: Characterization of a quantitative assay.J. Cell Biol. 99, 1867–71.

    PubMed  Google Scholar 

  • Sheetz, M. P. &Spudich, J. A. (1983) Movement of myosin-coated fluorescent beads on actin cablesin vitro.Nature, Lond. 303, 31–5.

    Google Scholar 

  • Shimmen, T. &Yano, M. (1984) Active sliding movement of latex beads coated with skeletal muscle myosin onChara actin bundles.Protoplasma 121, 132–7.

    Google Scholar 

  • Shimmen, T. &Yano, M. (1986) Regulation of myosin sliding alongChara actin bundles by native skeletal muscle tropomyosin.Protoplasma 132, 129–36.

    Google Scholar 

  • Sobieszek, A. (1973) The fine structure of the contractile apparatus of the anterior byssus retractor muscle ofMytilus edulis.J. Ultrastruct. Res. 43, 313–43.

    PubMed  Google Scholar 

  • Sohma, H., Inoue, K. &Morita, F. (1988) A cAMP-dependent regulatory protein for RLC -a myosin kinase catalyzing the phosphorylation of scallop smooth muscle myosin light chain.J. Biochem., Tokyo 103, 431–5.

    Google Scholar 

  • Sohma, H., Yazawa, M. &Morita, F. (1985) Phosphorylation of regulatory light chain a (RLC-a) in smooth muscle myosin of scallop,Patinopecten yessoensis.J. Biochem., Tokyo 98, 569–72.

    Google Scholar 

  • Szent-Györgyi, A. G., Cohen, C. &Kendrick-Jones, J. (1971) Paramyosin and the filaments of molluscan “catch” muscles. II. Native filaments: Isolation and characterization.J. molec. Biol. 56, 239–58.

    PubMed  Google Scholar 

  • Szent-Györgyi, A. G., Szentkiralyi, E. M. &Kendrick-Jones, J. (1973) The light chains of scallop myosin as regulatory subunits.J. molec. Biol. 74, 179–203.

    PubMed  Google Scholar 

  • Tameyasu, T. &Sugi, H. (1976) The series elastic component and the force-velocity relation in the anterior byssal retractor muscle ofMytilus edulis during active and catch contractions.J. exp. Biol. 64, 497–510.

    PubMed  Google Scholar 

  • Twarog, B. M. (1976) Aspects of smooth muscle function in molluscan catch muscle.Physiol. Rev. 56, 829–38.

    PubMed  Google Scholar 

  • Vale, R. D., Szent-Györgyi, A. G. &Sheetz, M. P. (1984) Movement of scallop myosin onNitella actin filaments: Regulation by calcium.Proc. natn. Acad. Sci. USA 81, 6775–8.

    Google Scholar 

  • Wells, C. &Bagshaw, C. R. (1985) Calcium regulation of molluscan myosin ATPase in the absence of actin.Nature, Lond. 313, 696–7.

    Google Scholar 

  • Yamada, A., Ishii, N., Shimmen, T. &Takahashi, K. (1987) Thick filaments isolated from a molluscan smooth muscle show ATPase and sliding activities.Cell Struct. Funct. 12, 620.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, A., Ishii, N., Shimmen, T. et al. Mg-ATPase activity and motility of native thick filaments isolated from the anterior byssus retractor muscle ofMytilus edulis . J Muscle Res Cell Motil 10, 124–134 (1989). https://doi.org/10.1007/BF01739968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01739968

Keywords

Navigation