Skip to main content
Log in

Microcavity dynamics during laser-induced spallation of liquids and gels

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photomechanical fracture induced by thermoelastic stress waves is an important mechanism of tissue ablation by short laser pulses. In this study, we present experimental investigations of the fracture process in ductile, water-containing materials and compare the results with a theoretical calculation. The model describes cavitation caused by the negative part of a bipolar thermoelastic stress wave. Pulses from aQ-switched, frequency-doubled Nd:YAG laser with 8 ns duration were used to irradiate dyed water and gelatine with variable absorption coefficient. Cavitation and ablation were observed with various time-resolved methods such as stress detection, video imaging and an optical pump-probe technique for the detection of individual cavities. Quantitative agreement between experiment and simulation could be achieved in the case of cavity lifetimes, especially at low laser fluence where the bubble density is low and no coalescence takes place. An increase of the threshold energy density for ablation with rising absorption coefficient and a distortion of the thermoelastic wave in the presence of cavitation were experimentally observed and could be qualitatively explained by use of the simulation. The results obtained in this study should facilitate the choice of the optimal laser parameters for photomechanical tissue ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Oraevsky, R.O. Esenaliev, V.S. Lethokhov: InLaser Ablation, Mechanisms and Applications. ed. by J.C. Miller, R.F. Haglund, Lecture Notes Phys., Vol. 389 (Springer, Berlin, Heidelberg 1991) pp. 112–122

    Google Scholar 

  2. G. Paltauf, E. Reichel, H. Schmidt-Kloiber: SPIE Proc.1646, 343 (1992)

    Google Scholar 

  3. A.A. Oraevsky, S.L. Jacques, F.K. Tittel: J. Appl. Phys.78, 1281 (1995)

    Google Scholar 

  4. S.L. Jacques, G. Gofstein: SPIE Proc.1646, 284 (1992)

    Google Scholar 

  5. G. Paltauf, H. Schmidt-Kloiber: SPIE Proc.2134A, 93 (1994)

    Google Scholar 

  6. A.A. Oraevsky, R. Esenaliev, S.L. Jacques, F.K. Tittel: SPIE Proc.2391, 300 (1995)

    Google Scholar 

  7. D. Albagli, B. Banish, M. Dark, G.S. Janes, C. von Rosenberg, L. Perelman, I. Itzkan, M.S. Feld: Lasers Surg. Med.14, 374 (1994)

    Google Scholar 

  8. E.F. Carome, N. A. Clark, C. E., Moeller: Appl. Phys. Lett.4, 95 (1964)

    Google Scholar 

  9. M.W. Sigrist: J. Appl. Phys.60, R83 (1986)

    Google Scholar 

  10. J.C. Bushnell, D.J. McCloskey: J. Appl. Phys.39, 5541 (1968)

    Google Scholar 

  11. P.E. Dyer, R.K. Al-Dhahir: SPIE Proc.1202, 46 (1990)

    Google Scholar 

  12. F.W. Cross, R.K. Al-Dhahir, P.E. Dyer: J. Appl. Phys.64, 2194 (1988)

    Google Scholar 

  13. D. Albagli, M. Dark, L.T. Perelman, C. von Rosenberg, I. Itzkan, M.S. Feld: Opt. Lett.19, 1684 (1994)

    Google Scholar 

  14. R.S. Dingus, R.J. Scammon: SPIE Proc.1427, 45 (1991)

    Google Scholar 

  15. R.A. Wentzell, G.J. Lastman: Phys. Fluids26, 638 (1983)

    Google Scholar 

  16. E. Cramer: InCavitation and Inhomogeneities in Underwater Acoustics, ed. by W. Lauterborn, Springer Ser. Electron. Photon., Vol. 4 (Springer, Berlin, Heidelberg 1980) pp. 54–63

    Google Scholar 

  17. A.L. McKenzie: Phys. Med. Biol.35, 1175 (1990)

    Google Scholar 

  18. V.P. Skripov, E.N. Sinitsyn, P.A. Pavlov, G.V. Ermakov, G.N. Muratov, N.V. Bulanov, V.G. Baidakov:Thermophysical Properties of Liquids in the Metastable (Superheated) State (Gordon & Breach, New York 1988)

    Google Scholar 

  19. G. Paltauf, H. Schmidt-Kloiber: Lasers Surg. Med.16, 277 (1995)

    Google Scholar 

  20. J.C. Fisher: J. Appl. Phys.19, 1062 (1948)

    Google Scholar 

  21. K.J. Ebeling: Acustica40, 229 (1978) (in German)

    Google Scholar 

  22. R.A. Wentzell, G.J. Lastman: InCavitation and Inhomogeneities in Underwater Acoustics. ed. by W. Lauterborn, Springer Ser. Electron. Photon., Vol. 4 (Springer, Berlin, Heidelberg 1980) pp. 72–78

    Google Scholar 

  23. R.E. Apfel: InCavitation and Inhomogeneities in Underwater Acoustics, ed. by W. Lauterborn, Springer Ser. Electron. Photon., Vol. 4 (Springer, Berlin, Heidelberg 1980) pp. 79–83

    Google Scholar 

  24. J.W. Rayleigh: Philos. Mag.34, 94 (1917)

    Google Scholar 

  25. T. Antoun, L. Seaman, M.E. Glinsky: SPIE Proc.2391, 413 (1995)

    Google Scholar 

  26. R.H. Cole:Underwater Explosions (Dover, New York 1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paltauf, G., Schmidt-Kloiber, H. Microcavity dynamics during laser-induced spallation of liquids and gels. Appl. Phys. A 62, 303–311 (1996). https://doi.org/10.1007/BF01594227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01594227

PACS

Navigation