Skip to main content
Log in

On the supermodular knapsack problem

  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we introduce binary knapsack problems where the objective function is nonlinear, and investigate their Lagrangean and continuous relaxations. Some of our results generalize previously known theorems concerning linear and quadratic knapsack problems. We investigate in particular the case in which the objective function is supermodular. Under this hypothesis, although the problem remains NP-hard, we show that its Lagrangean dual and its continuous relaxation can be solved in polynomial time. We also comment on the complexity of recognizing supermodular functions. The particular case in which the knapsack constraint is of the cardinality type is also addressed and some properties of its optimal value as a function of the right hand side are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • M.S. Bazaraa and C.M. Shetty,Nonlinear Programming, Theory and Algorithms (Wiley, New York, 1979).

    Google Scholar 

  • A. Billionnet and M. Minoux, “Maximizing a supermodular pseudoboolean function: a polynomial algorithm for supermodular cubic functions,”Discrete Applied Mathematics 12 (1985) 1–11.

    Google Scholar 

  • P. Chaillou, P. Hansen and Y. Mahieu, “Best network flow bounds for the quadratic knpsack problem,” presented at NETFLOW83 International Workshop, Pisa, Italy (1983).

  • Y. Crama, “Recognition problems for special classes of pseudoboolean functions,” RUTCOR Research Report, Rutgers University (New Brunswick, NJ, 1986).

    Google Scholar 

  • M.L. Fisher, G.L. Nemhauser and L.A. Wolsey, “An analysis of approximations for maximizing submodular set functions—I,”Mathematical Programming 14 (1978) 265–294.

    Google Scholar 

  • G. Gallo, M.D. Grigoriadis and R.E. Tarjan, “A parametric maximum flow algorithm,” Department of Computer Science, Rutgers University (New Brunswick, NY, 1987).

    Google Scholar 

  • G. Gallo, P. Hammer and B. Simeone, “Quadratic knapsack problems,”Mathematical Programming 12 (1980) 132–149.

    Google Scholar 

  • A.V. Goldberg and R.E. Tarjan, “A new approach to the maximum flow problem,”Proceedings of the 18th Annual ACM Symposium on Theory of Computing (1986) pp. 136–146.

  • M. Grötschel, L. Lovasz and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization,”Combinatorica 1 (1981) 169–197.

    Google Scholar 

  • M. Grötschel, L. Lovasz and A. Schrijver,Geometric Algorithms in Combinatorial Optimization (Springer, New York, 1988).

    Google Scholar 

  • P.L. Hammer and S. Rudeanu,Boolean methods in Operations Research and related areas (Springer, Heidelberg, 1968).

    Google Scholar 

  • P.L. Hammer and B. Simeone, “Quasimonotone boolean functions and bistellar graphs,”Annals of Discrete Mathematics 9 (1980) 107–119.

    Google Scholar 

  • R.M. Karp, “Reducibility among combinatorial problems,” in: R.E. Miller and J.W. Thatcher, eds.,Complexity of Computer Computations (Plenum Press, New York, 1972).

    Google Scholar 

  • B. Simeone, “Quadratic 0–1 programming, Boolean functions and graphs,” Doctoral Dissertation, Waterloo University (1979).

  • D.A. Topkis, “Minimizing a submodular function on a lattice,”Operations Research 26 (1978) 305–321.

    Google Scholar 

  • C. Witzgall, “Mathematical methods of site selection for Electronic Message Systems (EMS),” NBS Internal report (1975).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work done while the authors were visiting Rutgers University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallo, G., Simeone, B. On the supermodular knapsack problem. Mathematical Programming 45, 295–309 (1989). https://doi.org/10.1007/BF01589108

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589108

Keywords

Navigation