Skip to main content
Log in

Heat transfer in a hydromagnetic flow over a stretching sheet

Wärmeübergang von einer hydromagnetischen Flüssigkeit an ein bewegtes Band

  • Originalarbeiten
  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Exact solutions are obtained for the heat transfer in an electrically conducting fluid past a stretching sheet subjected to the thermal boundary with either a prescribed temperature or a prescribed heat flux in the presence of a transverse magnetic field. The solutions for the heat transfer characteristics are evaluated numerically for different parameters, such as the magnetic parameterN, the Prandtl numberPr, the surface temperature indexs, and the surface heat flux indexd. It is observed that for the prescribed surface temperature case the fluid temperature increases due to the existance of the magnetic field, and decreases as the Prandtl number or the surface temperature index increases; for the prescribed surface heat flux case, the surface temperature decreases as the Prandtl number of the surface heat flux index increases, and the magnetic parameter decreases. In addition, varying the prescribed surface temperature indexs affects the mechanism of heat transfer.

Zusammenfassung

Es werden exakte Lösungen für den Wärmeübergang von einem elektrisch leitenden Fluid an ein bewegtes Band angegeben, welche unter den Randbedingungen aufgeprägter Temperatur oder aufgeprägten Wärmeflusses mit jeweils senkrecht zum Rand orientiertem magnetischen Feld gelten. Numerische Auswertungen der Lösungen für das Wärmeübergangsverhalten beziehen sich auf Variationen der Kenngrößen MagnetisierungsparameterN, Prandtl-ZahlPr, Oberflächentemperaturindexs und Oberflächenwärmeflußindexd. Bei aufgeprägter Oberflächentemperatur steigt die Fluidtemperatur infolge Präsenz des Magnetfeldes und sinkt mit steigender Prandtl Zahl oder zunehmendem Oberflächentemperaturindex. Bei aufgeprägtem Wärmefluß sinkt die Oberflächentemperatur, wenn Prandtl-Zahl oder Wärmeflußindex zunehmen und der Magnetisierungsparameter abnimmt. Weiterhin beeinflußt die Veränderung des aufgeprägten Oberflächentemperaturindexs den Wärmeübergangsmechanismus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant

B :

constant

B 0 :

magnetic field density

d :

heat flux parameter

f :

similarity function

g :

similar dimensionless temperature function

K f :

thermal conductivity

m :

stretching constant

N :

magnetic parameter

Pr :

Prandtl number

q :

surface heat flux

r :

positive constant

s :

surface temperature parameter

T :

temperature

u, v :

velocity component inx, y directions, respectively

x, y :

streamwise and normal to surface coordinates, respectively

α f :

thermal diffusivity of fluid

η :

similarity variable

θ :

dimensionless temperature

ν f :

kinematics viscosity of fluid

ρ :

density

σ :

electric conductivity

ψ :

stream function

′:

derivative with respect toη

f:

fluid conditions

w:

conditions at the surface

∞:

ambient conditions

References

  1. Sakiadis, B. C. Boundary-layer behavior on continuous solid surfaces. A.I.Ch.E., J. 7 (1961) 26–28

    Google Scholar 

  2. Erickson, L. E.;Fan, L. T.;Fox, V. G. Heat and mass transfer on a moving continuous flat plate with suction or blowing. Ind. Engng. Chem. Fundam. 5 (1966) 19–25

    Google Scholar 

  3. Crane, L. J. Flow past a stretching plane. Z. Angew. Math. Phys. 21 (1970) 645–647

    Google Scholar 

  4. Gupta, P. S.;Gupta, A. S. Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Engng. 55 (1977) 744–746

    Google Scholar 

  5. Dutta, B. K.;Roy, P.;Gupta, A. S. Temperature field in flow over a stretching sheet with uniform heat flux. Int. Commun. Heat Mass Transfer 12 (1985) 89–94

    Google Scholar 

  6. Grubka, L. J.;Bobba, K. M. Heat transfer characteristics of continuous, stretching surface with variable temperature. ASME Trans. 107 (1985) 248–250

    Google Scholar 

  7. Murty, T. V. R.;Sarma, Y. V. B. Heat transfer in flow past a continuously moving porous flat plate. Wärme- und Stoffübertragung 20 (1985) 39–42

    Google Scholar 

  8. Chen, C. K.;Char, M. I. Heat transfer of a continuous, stretching surface with suction or blowing. J. Math. Anal. and Applic. 135 (1988) 568–580

    Google Scholar 

  9. Chakrabarti, A.;Gupta, A. S. Hydromagnetic flow and heat transfer over a stretching sheet. Quart. Appl. Math. 37 (1979) 73–78

    Google Scholar 

  10. Dutta, B. K. Heat transfer from a stretching sheet in hydromagnetic flow. Wärme-und Stoffübertragung 23 (1988) 35–37

    Google Scholar 

  11. Abramowitz, M.; Stegun, L.A.: Handbook of Mathematical Functions. AMS 55, National Bureau of Standards, Dec. (1972)

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author is indebted to Professor Dr. E. R. G. Eckert and to the anonymous referee for their valuable comments and suggestions which led to an improvement of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Char, MI. Heat transfer in a hydromagnetic flow over a stretching sheet. Warme - Und Stoffubertragung 29, 495–500 (1994). https://doi.org/10.1007/BF01539502

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539502

Keywords

Navigation