Skip to main content
Log in

Experimental study of phase transitions in mercury

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The results of sound velocity measurements in mercury, performed at temperatures from 300 up to 2(150 K and pressures from 30 up to 1900 bar by a precise pulsed phase-sensitive technique for a frequency of 10 MHz, are presented. The explored range of state parameters includes liquid and gaseous phases, the coexistence curve up to the critical point, and the supercritical region. The data obtained indicate the existence of two first-order phase transitions in mercury that take place in the vapor near saturation and in the supercritical fluid. The positions of the critical points of these transitions were estimated. An interpretation of the observed phenomena is given: It leads to the new approach to the nature of the critical point of liquid-gas transition in mercury. It is shown also that the fourth derivative of the thermodynamic potential of mercury has a special feature in the metal-nonmetal transition region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Landau and I. Zeldovich.Acta Phys. Chem. USSR 18:1940 (1943).

    Google Scholar 

  2. N. Mott.Metal-Insulator Transitions (Taylor & Francis, London, 1974).

    Google Scholar 

  3. F. Hensel and E. U. Frank.Ber. Bunsenges. Phys. Chem. 70:1154 (1966).

    Google Scholar 

  4. I. K. Kikoin and A. P. Senchenkov,Fizika Metallor i Metallovedenie 24:843 (1967) (in Russian).

    Google Scholar 

  5. W. Gotzlaff, G. Shonherr. and F. Hensel.Z. Phys. Chem. N.F. 156:219 (1988): W. Gotzlaff, Thesis (Marburg University, Marburg, 1988).

    Google Scholar 

  6. U. Even and J. Jortner,Phys. Rev. Lett. 28:31 (1972).

    Google Scholar 

  7. W. W. Warren, Jr., and F. Hensel,Phys. Rev. B 26:5980 (1982).

    Google Scholar 

  8. M. Yao, W. Hayami, and H. Endo.J. Non-Crustall. Solids 117/118:473 (1990).

    Google Scholar 

  9. I. K. Kikoin, A. P. Senchenkov, S. P. Naurzakov. and E. B. Gelman. Preprint IAE-3310. Moscow ( 1973).

  10. V. F. Kozhevnikov,Zh. Eksp. Teor. Fiz. 97:541 (1990) [transl. Sov. Phys. JETF,70:298 (1990]: V. F. Kozhevnikov, S. P. Naurzakov, and A. P. Senchenkov,J. Moscow Phys. Soc. 1:171 (1991).

    Google Scholar 

  11. L. J. Duckers and R. G. Ross.Phys. Lett. A38:291 (1972).

    Google Scholar 

  12. F. E. Neale and N. E. Cusack,J. Phys. F Metal Phys. 9:85 (1979).

    Google Scholar 

  13. W. Hefner and F. Hensel,Phys. Rev. Lett. 48:1026 (1982).

    Google Scholar 

  14. M. Yao, H. Uchtmann. and F. Hensel,Surface Sci. 157:456 (1985).

    Google Scholar 

  15. H. Uchtmann, U. Brusius, M. Yao, and F. Hensel,Z. Phys. Chem. N.F. 156:151 (1988).

    Google Scholar 

  16. A. Likalter.Uspekhi Fiz. Nauk 162:119 (1992) (in Russian).

    Google Scholar 

  17. G. E. Norman and N. Starostin,Teplofiz. Vysokih Temp. 8:413 (1970) (in Russian).

    Google Scholar 

  18. L. A. Turkevich and M. H. Cohen,J. Phys. Chem. 88:3751 (1984).

    Google Scholar 

  19. K. Suzuki, M. Unitake, and S. Fujiwaka,IPPJ-310 (Institute of Plasma Physics. Nagoya University, Nagoya. Japan, 1977): K. Suzuki. M. Unitake. S. Fujiwaka, M. Yao, and H. Endo.J. Phys. Paris 41:C8–70 (1980).

    Google Scholar 

  20. H. A. Spetzler. M. D. Meyer, and Tin Chan.High Temp.-High Press.7:481 (1975).

    Google Scholar 

  21. M. Hensel. Thesis (University of Marburg. Marburg, 1993).

  22. D. I. Arnold, A. M. Gordeenko, P. N. Ermilov, V. F. Kozhevnikov, and S. P. Naurzakov,Prih. Tekh. Exsp. No. 5, 143 (1985) (in Russian).

  23. N. B. Vargaltik, V. F. Kozhevnikov, A. M. Gordeenko, D. I. Arnold, and S. P. Naurzakov,Int. J. Thermophys. 7:821 (1986).

    Google Scholar 

  24. H. McSkimin,Physical Acoustics—Principles and Methods Vol. 1A, W. P. Mason. ed. (Academic Press, New York, 1964).

    Google Scholar 

  25. V. F. Kozhevnikov, D. I. Arnold, and S. P. Naurzakov,J. Phys. Condenced Matter 6:A249 (1994).

    Google Scholar 

  26. V. F. Kozhevnikov, S. P. Naurzakov, and D. I. Arnold.J. Moscow Phys. Soc. 3:191 (1993).

    Google Scholar 

  27. C. W. Garland. inPhysical Acoustics—Principles and Methods, Vol. VII W. P. Mason and R. N. Thurnston, eds. (Academic Press, New York, 1970).

    Google Scholar 

  28. L. D. Landau and E. M. Lifshitz.Hydrodynamics (Nauka. Moscow, 1986), p.355.

    Google Scholar 

  29. W. W. Warren. Jr., and F. Hensel,Phys. Rev. B 26:5990 (1982).

    Google Scholar 

  30. J. Thoen. E. Vangleel, and W. Van Dael.Physica,45:339 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozhevnikov, V.F., Arnold, D.I. & Naurzakov, S.P. Experimental study of phase transitions in mercury. Int J Thermophys 16, 619–628 (1995). https://doi.org/10.1007/BF01438847

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438847

Key words

Navigation