Skip to main content
Log in

Evolution of aging: Testing the theory usingDrosophila

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Evolutionary explanations of aging (or senescence) fall into two classes. First, organisms might have evolved the optimal life history, in which survival and fertility late in life are sacrificed for the sake of early reproduction or high pre-adult survival. Second, the life history might be depressed below this optimal compromise by the influx of deleterious mutations; since selection against late-acting mutations is weaker, deleterious mutations will impose a greater load on late life. We discuss ways in which these theories might be investigated and distinguished, with reference to experimental work withDrosophila. While genetic correlations between life history traits determine the immediate response to selection, they are hard to measure, and may not reflect the fundamental constraints on life history. Long term selection experiments are more likely to be informative. The third approach of using experimental manipulations suffers from some of the same problems as measures of genetic correlations; however, these two approaches may be fruitful when used together. The experimental results so far suggest that aging inDrosophila has evolved in part as a consequence of selection for an optimal life history, and in part as a result of accumulation of predominantly late-acting deleterious mutations. Quantification of these effects presents a major challenge for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton, N. H., 1990. Pleiotropic models of quantitative variation. Genetics 124: 773–782.

    PubMed  Google Scholar 

  • Barton, N. H. & M. Turelli, 1989. Evolutionary quantitative genetics: how little do we know? Ann. Rev. Genet. 23: 337–370.

    PubMed  Google Scholar 

  • Bell, G. & V. Koufopanou, 1986. The cost of reproduction. Oxf. Surv. Evol. Biol. 3: 83–131.

    Google Scholar 

  • Bulmer, M. G., 1980. The Mathematical Theory of Quantitative Genetics. Oxford University Press, Oxford.

    Google Scholar 

  • Caballero, A., M. Toro & C. Lopez-Fanjul, 1991. The response to artificial selection from new mutations inDrosophila melanogaster, Genetics 128: 89–102.

    PubMed  Google Scholar 

  • Calow, P., 1979. The cost of reproduction: a physiological approach. Biol. Rev. 54: 23–40.

    PubMed  Google Scholar 

  • Carey, J. R., P. Leido, D. Orozco & J. W. Vaupel, 1992. Slowing of mortality rates at older ages in large medfly cohorts. Science 258: 457–461.

    PubMed  Google Scholar 

  • Chapman, T., 1992. A cost of mating with males that do not transfer sperm in femaleDrosophila melanogaster. J. Insect Physiol. 38: 223–227.

    Google Scholar 

  • Charlesworth, B., 1980. Evolution in Age-Structured Populations. Cambridge University Press, Cambridge.

    Google Scholar 

  • Charlesworth, B., 1990. Optimization models, quantitative genetics and mutation. Evolution 44: 520–538.

    Google Scholar 

  • Charnov, E. L., 1989. Phenotypic evolution under Fisher's fundamental theorem of natural selection. Heredity 62: 113–116.

    PubMed  Google Scholar 

  • Chippindale, A. K., A. M. Leroi, S. B. Kim & M. R. Rose, 1993. Phenotypic plasticity of life history mimics response to selection inDrosophila melanogaster: trade-offs between survival and reproduction. J. Evol. Biol. 6: 171–193.

    Google Scholar 

  • Clark, A. G., 1987. Senescence and the genetic-correlation hangup. Amer. Natur. 129: 932–940.

    Google Scholar 

  • Curtsinger, J. W., H. H. Fukui, D. R. Townsend & J. W. Vaupel, 1992. Demography of genotypes: failure of the limited lifespan paradigm inDrosophila melanogaster. Science 258: 461–463.

    PubMed  Google Scholar 

  • Edney, E. B. & R. W. Gill, 1968. Evolution of senescence and specific longevity. Nature 220: 281–282.

    PubMed  Google Scholar 

  • Finch, C. E., 1990. Longevity, senescence and the genome. University of Chicago Press, Chicago.

    Google Scholar 

  • Fowler, K. & L. Partridge, 1989. A cost of mating in female fruitflies. Nature 338: 760–761.

    Google Scholar 

  • Gomulkiewicz, R. & M. Kirkpatrick, 1992. Quantitative genetics and the evolution of reaction norms. Evolution 46: 390–411.

    Google Scholar 

  • Hamilton, W. D., 1966. The moulding of senescence by natural selection. J. Theor. Biol. 12: 12–45.

    PubMed  Google Scholar 

  • Harshman, L. G., A. A. Hoffmann & T. Prout, 1988. Environmental effects on remating inDrosophila melanogaster. Evolution 42: 312–321.

    Google Scholar 

  • Hill, W. G., 1982. Rates of change in quantitative traits from fixation of new mutations. Proc. Natl. Acad. Sci. (USA) 79: 142–145.

    Google Scholar 

  • Houle, D., 1991. Genetic covariance of fitness correlates: what genetic correlations are made of, and why it matters. Evolution 45: 630–648.

    Google Scholar 

  • Houle, D., D. K. Hoffmaster, S. Assimacopoulos & B. Charlesworth, 1992. The genomic mutation rate for fitness inDrosophila. Nature 359: 58–60.

    PubMed  Google Scholar 

  • Hutchinson, E. W., & M. R. Rose, 1991. Quantitative genetics of postponed aging inDrosophila melanogaster. I. Analysis of outbred populations. Genetics 127: 719–727.

    PubMed  Google Scholar 

  • Hutchinson, E. W., A. J. Shaw & M. R. Rose, 1991. Quantitative genetics of postponed aging inDrosophila melanogaster. II. Analysis of selected lines. Genetics 127: 729–737.

    PubMed  Google Scholar 

  • Kirkwood, T. B. L. & M. R. Rose, 1991. Evolution of senescence: late survival sacrificed for reproduction. Phil. Trans. Roy. Soc. Lond. B. 332: 15–24.

    Google Scholar 

  • Lamb, M. J., 1964. The effects of radiation on the longevity of femaleDrosophila subobscura. J. Insect Physiol. 10: 487–497.

    Google Scholar 

  • Lande, R., 1980. The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94: 203–215.

    Google Scholar 

  • Lande, R., 1982. A quantitative genetic theory of life history evolution. Ecology 63: 609–615.

    Google Scholar 

  • Lande, R. & S. J. Arnold, 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.

    Google Scholar 

  • Lessells, C. M., 1991. The evolution of life histories, pp. 32–68. Behavioural Ecology: An Evolutionary Approach, edited by J. R. Krebs and N. B. Davies. Blackwell Scientific Publishing.

  • Luckinbill, L. S., R. Arking, M. J. Clare, W. C. Cirocco & S. A. Buck, 1984. Selection for delayed senescence inDrosophila melanogaster. Evolution 38: 996–1003.

    Google Scholar 

  • Luckinbill, L. S., J. L. Graves, A. H. Reed & S. Koetsawang, 1988a. Localizing genes that defer senescence inDrosophila melanogaster. Heredity 60: 367–374.

    PubMed  Google Scholar 

  • Luckinbill, L. S., J. L. Graves, A. Tomkin & O. Sowirka, 1988b. A qualitative analysis of some life-history correlates of longevity inDrosophila melanogaster. Evol. Ecol. 2: 85–94.

    Google Scholar 

  • Maynard Smith, J., 1958. The effects of temperature and of egg-laying on the longevity ofDrosophila subobscura. J. Exp. Biol. 35: 832–842.

    Google Scholar 

  • Mackay, T. F. C., R. F. Lyman & M. S. Jackson, 1992. Effects of P-element insertions on quantitative traits inDrosophila melanogaster. Genetics 130: 315.

    PubMed  Google Scholar 

  • McKenzie, J. A. & G. M. Clarke, 1988. Diazinon resistance, fluctuating asymmetry and fitness in the Australian sheep blowfly,Lucilia cuprina. Genetics 120: 213–220.

    Google Scholar 

  • Medawar, P. B., 1946. Old age and natural death. Modern Quarterly 1: 30–56.

    Google Scholar 

  • Medawar, P. B., 1952. An unsolved problem of biology. H. K. Lewis, London.

    Google Scholar 

  • Modi, R. I. & J. Adams, 1991. Coevolution in bacterial-plasmid populations. Evolution 45: 656–667.

    Google Scholar 

  • Mueller, L. D., 1987. Evolution of accelerated senescence in laboratory populations ofDrosophila. Proc. Natl. Acad. Sci. USA 84: 1974–1977.

    PubMed  Google Scholar 

  • Newport, M. E. A. & M. H. Gromko, 1984. The effect of experimental design on female receptivity to remating and its impact on reproductive success inDrosophila melanogaster. Evolution 38: 1261–1272.

    Google Scholar 

  • Parker, G. A. & J. Maynard Smith. Optimality theory in evolutionary biology. Nature 348: 17–33.

  • Partridge, L., 1987. Is accelerated senescence a cost of reproduction? Funct. Ecol. 1: 317–320.

    Google Scholar 

  • Partridge, L., 1988. Lifetime reproductive success inDrosophila. Reproductive success, edited by T. R. Clutton-Brock, University of Chicago Press, Chicago.

    Google Scholar 

  • Partridge, L., 1992. Measuring reproductive costs. Trends in Ecology and Evolution 7: 99.

    Google Scholar 

  • Partridge, L. & R. Andrews, 1985. The effect of reproductive activity on the lifespan of maleDrosophila melanogaster is not caused by an acceleration of ageing. J. Insect. Physiol. 31: 393–395.

    Google Scholar 

  • Partridge, L. & N. H. Barton, 1993. Optimality, mutation and the evolution of ageing. Nature 362: 305–311.

    PubMed  Google Scholar 

  • Partridge, L. & K. Fowler, 1991. Non-mating costs of exposure to males in femaleDrosophila melanogaster. J. Insect Physiol. 36: 419–425.

    Google Scholar 

  • Partridge, L. & K. Fowler, 1992. Direct and correlated responses to selection on age at reproduction inDrosophila melanogaster. Evolution 46: 76–91.

    Google Scholar 

  • Partridge, L., K. Fowler, S. Trevitt & W. Sharp, 1986. An examination of the effects of males on the survival and egg-production rates of femaleDrosophila melanogaster. J. Insect. Physiol. 32: 925–929.

    Google Scholar 

  • Partridge, L., A. Green & K. Fowler, 1987. Effects of egg-production and of exposure to males on female survival inDrosophila melanogaster. J. Insect Physiol. 33: 745–749.

    Google Scholar 

  • Partridge, L. & P. H. Harvey, 1985. Costs of reproduction. Nature 316: 20–21.

    Google Scholar 

  • Partridge, L. & P. H. Harvey, 1988. The ecological context of life history evolution. Science 241: 1449–1454.

    Google Scholar 

  • Partridge, L. & R. Sibly, 1991. Constraints in the evolution of life histories. Phil. Trans. R. Soc. Lond.B332: 3–13.

    Google Scholar 

  • Pease, C. M. & J. J. Bull, 1988, A critique of methods for measuring life-history trade-offs. J. Evol. Biol. 1: 293–303.

    Google Scholar 

  • Rees, M. & M. J. Long, Germination biology and the ecology of annual plants. Amer. Nat. 139: 484–508.

  • Reznick, D., 1985. Costs of reproduction: an evaluation of the empirical evidence. Oikos 44: 257–267.

    Google Scholar 

  • Reznick, D., 1992a. Measuring the costs of reproduction. Trends in Ecology and Evolution 7: 42–45.

    Google Scholar 

  • Reznick, D., 1992b. Measuring reproductive costs: response to Partridge. Trends in Ecology and Evolution 7: 134.

    Google Scholar 

  • Roper, C., P. Pignatelli & L. Partridge, 1993. Evolutionary effects of selection on age at reproduction in larval and adultDrosophila melanogaster. Evolution 47: 445–455.

    Google Scholar 

  • Rose, M. R., 1982. Antagonistic pleiotropy, dominance and genetic variation. Heredity 48: 63–78.

    Google Scholar 

  • Rose, M. R., 1984. Laboratory evolution of postponed senescence inDrosophila melanogaster. Evolution 38: 1004–1010.

    Google Scholar 

  • Rose, M. R., 1985. Life history evolution with antagonistic pleiotropy and overlapping generations. Theor. Pop. Biol. 28: 342–358.

    Google Scholar 

  • Rose, M. R., 1991. Evolutionary Biology of Aging. Oxford University Press, Oxford.

    Google Scholar 

  • Rose, M. R. & B. Charlesworth, 1980. A test of evolutionary theories of senescence. Nature 287: 141–142.

    PubMed  Google Scholar 

  • Rose, M. R. & B. Charlesworth, 1981. Genetics of life history inDrosophila melanogaster. Sib analysis of adult females. Genetics 97: 173–186.

    Google Scholar 

  • Rose, M. R., P. Service & E. W. Hutchinson, 1987. Three approaches to trade-offs in life history evolution, pp. 91–105 in Genetic Constraints on Adaptive Evolution, edited by V. Loeschcke, Springer-Verlag, Berlin.

    Google Scholar 

  • Service, P. M., 1987. Physiological mechanisms of increased stress resistance inDrosophila melanogaster selected for postponed senescence. Physiol. Zool. 60: 321–326.

    Google Scholar 

  • Service, P. M., 1989. The effect of mating status on lifespan, egg laying, and starvation resistance inDrosophila melanogaster in relation to selection on longevity. J. Insect Physiol. 35: 447–452.

    Google Scholar 

  • Service, P. M., E. W. Hutchinson, M. D. MacKinley & M. R. Rose, 1985. Resistance to environmental stress inDrosophila melanogaster selected for postponed senescence. Physiol. Zool. 58: 380–389.

    Google Scholar 

  • Service, P. M. and M. R. Rose. Genetic covariation among life-history components: the effect of novel environments. Evolution 39: 943–945.

  • Shaw, R. G., 1987. Maximum-likelihood approaches applied to quantitative genetics of natural populations. Evolution 41: 82–826.

    Google Scholar 

  • Stearns, S. C., 1989. Trade-offs in life history evolution. Funct. Ecol. 3: 259–268.

    Google Scholar 

  • Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.

    Google Scholar 

  • Trevitt, S., 1989. The costs and benefits of repeated mating in the female fruitlyDrosophila melanogaster Meigen. Unpublished PhD Thesis, University of Edinburgh.

  • Trevitt, S., K. Fowler & L. Partridge, 1988. An effect of egg-deposition on the subsequent fertility and remating frequency of femaleDrosophila melanogaster. J. Insect Physiol. 34: 821–828.

    Google Scholar 

  • Turelli, M., 1985. Effects of pleiotropy on predictions concerning mutation-selection balance for polygenic traits. Genetics 111: 165–195.

    PubMed  Google Scholar 

  • Turelli, M., 1988. Phenotypic evolution, constant covariances, and the maintenance of additive variance. Evolution 42: 1342–1348.

    Google Scholar 

  • Vaupel, W. V. & A. I. Yashin, 1983. The deviant dynamics of death in heterogeneous populations. RR-83-1, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Wagner, G., 1989. Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics 122: 223–234.

    PubMed  Google Scholar 

  • Williams, G. C., 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411.

    Google Scholar 

  • Williams, G. C., 1966. Natural selection, the cost of reproduction, and a refinement of Lack's principle. Amer. Nat. 100: 687–690.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Partridge, L., Barton, N.H. Evolution of aging: Testing the theory usingDrosophila . Genetica 91, 89–98 (1993). https://doi.org/10.1007/BF01435990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435990

Key words

Navigation