Skip to main content
Log in

The eigenvalues of Hermite and rational spectral differentiation matrices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We derive expressions for the eigenvalues of spectral differentiation matrices for unbounded domains. In particular, we consider Galerkin and collocation methods based on Hermite functions as well as rational functions (a Fourier series combined with a cotangent mapping). We show that (i) first derivative matrices have purely imaginary eigenvalues and second derivative matrices have real and negative eigenvalues, (ii) for the Hermite method the eigenvalues are determined by the roots of the Hermite polynomials and for the rational method they are determined by the Laguerre polynomials, and (iii) the Hermite method has attractive stability properties in the sense of small condition numbers and spectral radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (1972): Handbook of Mathematical Functions. Dover, New York

    Google Scholar 

  2. Akhiezer, N.I. (1956): Theory of Approximation. Ungar, New York

    Google Scholar 

  3. Boyd, J. (1982): The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. J. Comput. Phys.45, 43–79

    Google Scholar 

  4. Boyd, J. (1984): The asymptotic coefficients of Hermite function series. J. Comput. Phys.54, 382–410

    Google Scholar 

  5. Boyd, J. (1987): Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys.69, 112–142

    Google Scholar 

  6. Boyd, J. (1988): Chebyshev domain truncation is inferior to Fourier domain truncation for solving problems on an infinite interval. J. Sci. Comput.3, 109–120

    Google Scholar 

  7. Boyd, J. (1989): Chebyshev & Fourier Spectral Methods. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Boyd, J. (1990): The orthogonal rational functions of Higgins and Christov and algebraically mapped Chebyshev polynomials. J. Approx. Theory61, 98–105

    Google Scholar 

  9. Christov, C.I. (1982): A complete orthonormal system of functions inL 2(−∞, ∞) space. SIAM J. Appl. Math.42, 1337–1344

    Google Scholar 

  10. Christov, C.I., Bekyarov, K.L. (1990): A Fourier-series, method for solving soliton problems. SIAM J. Sci. Stat. Comput.11, 631–647

    Google Scholar 

  11. Cain, A.B., Ferziger, J.H., Reynolds, W.C. (1984): Discrete orthogonal function expansions for non-uniform grids using the fast Fourier transform. J. Comput. Phys.56, 272–286

    Google Scholar 

  12. Higgins, J.R. (1977): Completeness and basis functions of sets of special functions. Cambridge University Press, Cambridge

    Google Scholar 

  13. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A. (1987): Spectral Methods in Fluid Dynamics. Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Funaro, D., Kavian, O. (1991): Approximations of some diffusion evolution equations in unbounded domains by Hermite functions. Math. Comput.57, 597–619

    Google Scholar 

  15. Gottlieb, D., Hussaini, M.Y., Orszag, S.A. (1984): Theory, and applications of spectral methods. In: R.G. Voigt (ed.) Spectral Methods for Partial Differential Equations, pp. 1–54. SIAM, Philadelphia

    Google Scholar 

  16. Grenander, U., Szegö, G. (1958): Toeplitz Forms and their Applications. University of California Press, Berkeley

    Google Scholar 

  17. Grosch, C.E., Orszag, S.A. (1977): Numerical solution of problems in unbounded regions: coordinate transformations. J. Comput. Phys.25, 274–296

    Google Scholar 

  18. Lubinsky, D.S.: Private communication

  19. Reddy, S., Trefethen, L.N. (1990): Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues. In: C. Canuto, A. Quarteroni, eds., Spectral and High Order Methods for Partial Differential Equations, pp. 147–164. North-Holland, Amsterdam

    Google Scholar 

  20. Stenger, F., (1981): Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Review23, 165–224

    Google Scholar 

  21. Stenger, F. (1979): A “Sinc-Galerkin” method of solution of boundary value problems. Math. Comput.33, 85–109

    Google Scholar 

  22. Stenger, F.: Private communication

  23. Szegö, G. (1939): Orthogonal Polynomials. American Mathematical Society, Providence

    Google Scholar 

  24. Trefethen, L.N.: Non-normal matrices and pseudo-eigenvalues. Preprint

  25. Trefethen, L.N. (1992): Pseudospectra of matrices. In: D.F. Griffiths, G.A. Watson, eds., Proceedings of the 14th Dundee Biennial Conference on Numerical Analysis

  26. Vandeven, H. (1990): On the eigenvalues of second-order spectral differentiation matrices. In: C. Canuto, A. Quarteroni, eds., Spectral and High Order Methods for Partial Differential Equations, pp. 313–318. North-Holland, Amsterdam

    Google Scholar 

  27. Weideman, J.A.C., Cloot, A. (1990): Spectral methods and mappings for evolution equations on the infinite line. In: C. Canuto, A. Quarteroni, eds., Spectral and High Order Methods for Partial Differential Equations, pp. 467–481. North-Holland, Amsterdam

    Google Scholar 

  28. Weideman, J.A.C., Trefethen, L.N. (1988): The eigenvalues of second-order spectral differentiation matrices. SIAM J. Numer. Anal.25, 1279–1298

    Google Scholar 

  29. Wilkinson, J.H. (1965): The Algebraic Eigenvalue Problem. Claredon Press, Oxford

    Google Scholar 

  30. Yuen, H.C., Ferguson, W.E. (1978): Relationship between Benjamin-Feir instability and recurrence in the nonlinear Schrödinger equation. Phys. Fluids.21, 1275–1278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weideman, J.A.C. The eigenvalues of Hermite and rational spectral differentiation matrices. Numer. Math. 61, 409–432 (1992). https://doi.org/10.1007/BF01385518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385518

Mathematics Subject Classification (1991)

Navigation