Skip to main content
Log in

Variational theory for correlated lattice fermions in high dimensions

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A diagrammatic approach to the evaluation of correlated variational wave functions for strongly interacting fermions is presented. Diagrammatic rules for the calculation of the one-particle density matrix and the Hubbard interaction are derived which are valid for arbitraryd-dimensional lattices. An exact evaluation of expectation values is performed in the limitd=∞. The wellknown Gutzwiller approximation is seen to become the exact result for the expectation value of the Hubbard Hamiltonian in terms of the Gutzwiller wave function ind=∞. An efficient procedure to correct the Gutzwiller approximation in finite dimensions is developed. A detailed discussion of expectation values ind=∞ in terms of explicit antiferromagnetic wave functions is given. Thereby an approximate result for the ground state energy of the Hubbard model, obtained recently within a slave-boson approach, is recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gutzwiller, M.C.: Phys. Rev. Lett.10, 159 (1963)

    Google Scholar 

  2. For a review, see Vollhardt, D.: In: Interacting electrons in reduced dimensions. Baeriswyl, D., Campbell, D. (eds.) New York: Plenum Press 1989

    Google Scholar 

  3. Anderson, P.W.: Science235, 1196 (1987)

    Google Scholar 

  4. Gutzwiller, M.C.: Phys. Rev.137A, 1726 (1965)

    Google Scholar 

  5. Ogawa, T., Kanda, K., Matsubara, T.: Prog. Theor. Phys.53, 614 (1975)

    Google Scholar 

  6. Vollhardt, D.: Rev. Mod. Phys.56, 99 (1984)

    Google Scholar 

  7. Takano, F., Uchinami, M.: Prog. Theor. Phys.53, 1267 (1975)

    Google Scholar 

  8. Florencio, J., Chao, K.A.: Phys. Rev. B14, 3121 (1976)

    Google Scholar 

  9. For a review, see H. Shiba in Proceedings of the Workshop on Two-Dimensional Strongly Correlated Electronic Systems, Beijing 1988 New York: Gordon and Breach 1989

    Google Scholar 

  10. Baeriswyl, D., Maki, K.: Phys. Rev. B31, 6633 (1985); Baeriswyl, D., Carmelo, J., Maki, K.: Synthetic Metals21, 271 (1987)

    Google Scholar 

  11. Metzner, W., Vollhardt, D.: Phys. Rev. Lett59, 121 (1987); Phys. Rev. B37, 7382 (1988)

    Google Scholar 

  12. Gebhard, F., Vollhardt, D.: Phys. Rev. Lett.59, 1472 (1987); Phys. Rev. B38, 6911 (1988)

    Google Scholar 

  13. Metzner, W., Vollhardt, D.: Phys. Rev. Lett.62, 324 (1989)

    Google Scholar 

  14. Kotliar, G., Ruckenstein, A.E.: Phys. Rev. Lett.57, 1362 (1986)

    Google Scholar 

  15. Hubbard, J.: Proc. R. Soc. London Ser. A276, 238 (1963); Kanamori, J.: Prog. Theor. Phys.30, 275 (1963)

    Google Scholar 

  16. The graphs used here differ slightly from the graphs described in Ref. 11,. Lines are now directed by an arrow and the spin is indicated by a free spin variable (not by drawing two types of lines) which has to be summed up. In this way one no longer needs to bother about the rather complicated “weight factors” introduced in Ref. 11. Metzner, W., Vollhardt, D.: Phys. Rev. Lett59, 121 (1987); Phys. Rev. B37, 7382 (1988)

    Google Scholar 

  17. See, for example, Negele, J.W., Orland, H.: Quantum manyparticle systems. New York: Addison-Wesley 1988

    Google Scholar 

  18. Note thatS (m)σ (k) is related to the quantityf mσ(k) introduced in Ref. 11,. byS (m)σ (k)=(g 2−1)m f mσ(k). Equation (25) is thus equivalent to (48) in Ref. 11. Metzner, W., Vollhardt, D.: Phys. Rev. Lett59, 121 (1987); Phys. Rev. B37, 7382 (1988)

    Google Scholar 

  19. We assume that |Φ0〉 does not break the point-group symmetry. A generalization is straightforward, however

  20. Dongen, van P.G.J., Gebhard, F., Vollhardt, D.: Z. Phys. B—Condensed Matter76, 199 (1989)

    Google Scholar 

  21. Müller-Hartmann, E.: Z. Phys. B—Condensed Matter74, 507 (1989)

    Google Scholar 

  22. Schweitzer, H., Czycholl, G.: Solid State Commun69, 171 (1989)

    Google Scholar 

  23. Yokoyama, H., Shiba, H.: J. Phys. Soc. Jpn.56, 1490 (1987)

    Google Scholar 

  24. Penn, D.R.: Phys. Rev.142, 350 (1966)

    Google Scholar 

  25. Yokoyama, H., Shiba, H.: J. Phys. Soc. Jpn.56, 3570 (1987); J. Phys. Soc. Jpn.56, 3582 (1987)

    Google Scholar 

  26. Zhang, F.C., Gros, C., Rice, T.M., Shiba, H.: Supercond. Sci. Technol.1, 36 (1988)

    Google Scholar 

  27. I am grateful to F. Gebhard for pointing this out to me

  28. For small densities or for ferromagnetic states the absence of a cutoff in the Gaussian DOS becomes important. However, these cases are not investigated here

  29. For largeU the half-filled Hubbard model becomes equivalent to the Heisenberg model. The ground state of the latter is the Neél state ind=∞; see T. Kennedy, Lieb, E.H., Shastry, B.S.: Phys. Rev. Lett61, 2582 (1988)

    Google Scholar 

  30. Metzner, W.: (unpublished)

  31. Note that we did not allow for ferromagnetism or phase separation. A more complete phase diagram including these possibilities is presently being elaborated by Menge, B., Müller-Hartmann, E.: Private communication

  32. Gebhard, F., Vollhardt, D.: In: Interacting electrons in reduced dimensions. Baeriswyl, D., Campbell, D. (eds.) New York: Plenum Press 1989

    Google Scholar 

  33. Gros, C., Joynt, R., Rice, T.M.: Z. Phys. B—Condensed Matter68, 425 (1987); Gros, C.: Phys. Rev. B38, 931 (1988); Yokoyama, H., Shiba, H.: J. Phys. Soc. Jpn.57, 2482 (1988)

    Google Scholar 

  34. Stollhoff, G., Fulde, P.: Z. Phys. B—Condensed Matter and Quanta26, 257 (1977); Kaplan, T.A., Horsch, P., Fulde, P.: Phys. Rev. Lett.49, 889 (1982)

    Google Scholar 

  35. Fazekas, P.: Preprint (submitted to Phys. Scr.)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzner, W. Variational theory for correlated lattice fermions in high dimensions. Z. Physik B - Condensed Matter 77, 253–266 (1989). https://doi.org/10.1007/BF01313669

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313669

Keywords

Navigation