Skip to main content
Log in

Confocal fluorescence microscopy of plant cells

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The confocal laser scanning microscope (CLSM) has become a vital instrument for the examination of subcellular structure, especially in fluorescently stained cells. Because of its ability to markedly reduce out-of-focus flare, when compared to the conventional wide-field fluorescence microscope, the CLSM provides a substantial improvement in resolution along the “z” axis and permits optical sectioning of cells. These developments have been particularly helpful for the investigation of plant cells and tissues, which because of their shape, size, and optical properties have been difficult to analyze at high resolution by conventional means. We review the contribution that the CLSM has made to the study of plant cells. We first consider the principle of operation of the CLSM, including a discussion of image processing, and of lasers and appropriate fluorescent dyes. We then summarize several studies of both fixed and live plant cells in which the instrument has provided new or much clearer information about cellular substructure than has been possible heretofore. Attention is given to the visualization of different components, including especially the cytoskeleton, endomembranes, nuclear components, and relevant ions, and their changes in relationship to physiological and developmental processes. We conclude with an effort to anticipate advances in technology that will improve and extend the performance of the CLSM. In addition to the usual bibliography, we provide internet addresses for information about the CLSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe H, Funada R, Imaizumi H, Ohtani J, Fukazawa K (1995) Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. Planta 197: 418–421

    Google Scholar 

  • Agard DA, Hiraoka Y, Shaw PJ, Sedat JW (1989) Fluorescence microscopy in three dimensions. Methods Cell Biol 30: 353–378

    Google Scholar 

  • Allen NS, Brown T (1988) Dynamics of the endoplasmic reticulum in living onion epidermal cells in relation to microtubules, microfilaments, and intracellular particle movement. Cell Motil Cytoskeleton 10: 153–163

    Google Scholar 

  • Baluška F, Bacigálová K, Oud JL, Hauskrecht M, Kubica S (1995) Rapid reorganization of microtubular cytoskeleton accompanies early changes in nuclear ploidy and chromatin structure in postmitotic cells of barley leaves infected with powdery mildew. Protoplasma 185: 140–151

    Google Scholar 

  • Baskin TI, Busby CH, Fowke LC, Sammut M, Gubler F (1992) Improvements in immunostaining samples embedded in methacrylate: localization of microtubules and other antigens throughout developing organs in plants of diverse taxa. Planta 187: 405–413

    Google Scholar 

  • —, Miller DD, Vos JW, Wilson JE, Hepler PK (1996) Cryofixing single cells and multicellular specimens enhances structure and immunocytochemistry for light microscopy. J Microsc 182: 149–161

    Google Scholar 

  • Beven A, Guan Y, Peart J, Cooper C, Shaw P (1991) Monoclonal antibodies to plant nuclear matrix reveal intermediate filamentrelated components within the nucleus. J Cell Sci 98: 293–302

    Google Scholar 

  • —, Simpson GG, Brown JWS, Shaw PJ (1995) The organization of spliceosomal components in the nuclei of higher plants. J Cell Sci 108: 509–518

    Google Scholar 

  • Blancaflor EB, Hasenstein KH (1993) Organization of cortical microtubules in graviresponding maize roots. Planta 191: 231–237

    Google Scholar 

  • — — (1995) Time course and auxin sensitivity of cortical microtubule reorientation in maize roots. Protoplasma 185: 72–82

    Google Scholar 

  • Bonsignore CL, Hepler PK (1985) Caffeine inhibition of cytokinesis: dynamics of cell plate formation-deformation in vivo. Protoplasma 129: 28–35

    Google Scholar 

  • Bouget F-Y, Gerttula S, Shaw SL, Quatrano RS (1996) Localization of actin mRNA during the establishment of cell polarity and early cell divisions inFucus embryos. Plant Cell 8: 189–201

    Google Scholar 

  • Brakenhoff GJ, Squier J, Norris T, Bliton AC, Wade MH, Athey B (1996) Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J Microsc 181: 253–259

    Google Scholar 

  • Brelje TC, Wessendorf MW, Sorenson RL (1993) Multicolor laser scanning confocal immunofluorescence microscopy: practical application and limitations. Methods Cell Biol 38: 97–181

    Google Scholar 

  • Brown RC, Lemmon BE (1991a) Pollen development in orchids 2: the cytokinetic apparatus in simultaneous cytokinesis. Protoplasma 165: 155–166

    Google Scholar 

  • — — (1991b) Pollen development in orchids 3: a novel generative pole microtubule system predicts unequal pollen mitosis. J Cell Sci 99: 273–281

    Google Scholar 

  • — — (1991c) Pollen development in orchids 5: a generative cell domain involved in spatial control of the hemispherical cell plate. J Cell Sci 100: 559–565

    Google Scholar 

  • — — (1991d) The cytokinetic apparatus in meiosis: control of division plane in the absence of a preprophase band of microtubules. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. New York, Academic Press, pp 259–273

    Google Scholar 

  • — — (1992a) Pollen development in orchids 4: cytoskeleton and ultrastructure of the unequal pollen mitosis inPhalaenopsis. Protoplasma 176: 183–192

    Google Scholar 

  • — — (1992b) Cytoplasmic domain: a model for spatial control of cytokinesis in reproductive cells of plants. EMSA Bull 22: 48–53

    Google Scholar 

  • — — (1994) Pollen mitosis in the slipper orchidCypripedium fasciculatum. Sex Plant Reprod 7: 87–94

    Google Scholar 

  • — — (1995) Methods in plant immunolight microscopy. Methods Cell Biol 49: 85–107

    Google Scholar 

  • — — (1996) Nuclear cytoplasmic domains, microtubules and organelles in microsporocytes of the slipper orchidCypripedium californicum A. Gray dividing by simultaneous cytokinesis. Sex Plant Reprod 9: 145–152

    Google Scholar 

  • — —, Mullinax JB (1989) Immunofluorescent staining of microtubules in plant tissues: improved embedding and sectioning techniques using polyethylene glycol (PEG) and Steedman's wax. Bot Acta 102: 54–61

    Google Scholar 

  • — —, Olsen O-A (1994) Endosperm development in barley: microtubule involvement in the morphogenetic pathway. Plant Cell 6: 1241–1252

    Google Scholar 

  • — — — (1996) Polarization predicts the pattern of cellularization in cereal endosperm. Protoplasma 192: 168–177

    Google Scholar 

  • Cai G, Bartalesi A, Del Casino C, Moscatelli A, Tiezzi A, Cresti M (1993) The kinesin immunoreactive homologue fromNicotiana tabacum pollen tubes: biochemical properties and subcellular localization. Planta 191: 496–506

    Google Scholar 

  • —, A Moscatelli, Del Casino C, Chevrier V, Mazzi M, Tiezzi A, Cresti M (1996) The anti-centrosome antibody 6C6 reacts with a plasma membrane associated polypeptide of 77 kDa fromNicotiana tabacum pollen tubes. Protoplasma 190: 68–78

    Google Scholar 

  • Callaham DA, Hepler PK (1991) Measurement of free calcium in plant cells. In: McCormack JG, Cobbold PH (eds) Cellular calcium: a practical approach. IRL Press, Oxford, pp 383–410

    Google Scholar 

  • Carlsson K (1991) The influence of specimen refractive index, detector signal integration, and non-uniform scan speed on the imaging properties in confocal microscopy. J Microsc 163: 167–178

    Google Scholar 

  • Chen H, Swedlow JR, Grote M, Sedat JW, Agard DA (1995) The collection, processing and display of digital three-dimensional images of biological specimens. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 197–210

    Google Scholar 

  • Chen V (1995) Non-laser light sources: not using laser light for confocal microscopy and how to use laser light when it's all you have. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 99–109

    Google Scholar 

  • Cheng PC, Kriete A (1995) Image contrast in confocal light microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 281–310

    Google Scholar 

  • —, Lin TH, Wu WL, Wu JL (eds) (1994a) Multidimensional microscopy. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • —, Pareddy DR, Lin T-H, Samarabandu JK, Acharya R, Wang G, Liou W-S (1994b) Confocal microscopy of botanical specimens. In: Cheng PC, Lin TH, Wu WL, Wu JL (eds) Multidimensional microscopy. Springer, Berlin Heidelberg New York Tokyo, pp 339–380

    Google Scholar 

  • Christensen CA, King EJ, Jordan JR, Drews GN (1997) Megagametogenesis inArabidopsis wild type and the GF mutant. Sex Plant Reprod 10: 49–64

    Google Scholar 

  • Cleary AL (1993) Confocal microscopy of the cytoskeleton in living plant cells following microinjection of fluorescent probes. In: Bailey GW, Rieder CL (eds) Proceedings of the 51st EMSA Meeting. San Francisco Press, San Francisco, pp 130–131

    Google Scholar 

  • —, (1995) F-actin redistributions at the division site in livingTradescantia stomatal complexes as revealed by microinjection of rhodamine-phalloidin. Protoplasma 185: 152–165

    Google Scholar 

  • —, Mathesius U (1996) Rearrangement of F-actin during stomatogenesis visualized by confocal microscopy in fixed and permeabilizedTradescantia leaf epidermis. Bot Acta 109: 15–24

    Google Scholar 

  • —, Brown RC, Lemmon BE (1992a) Microtubule arrays during mitosis in monoplastidic root tip cells ofIsoetes. Protoplasma 167: 123–133

    Google Scholar 

  • — — — (1992b) Establishment of division plane and mitosis in monoplastidic guard mother cells ofSelaginella. Cell Motil Cytoskeleton 23: 89–101

    Google Scholar 

  • —, Gunning BES, Wasteneys GO, Hepler PK (1992c) Microtubules and F-actin dynamics at the division site in livingTradescantia stamen hair cells. J Cell Sci 103: 977–988

    Google Scholar 

  • —, Brown RC, Lemmon BE (1993) Organization of microtubules and actin filaments in the cortex of differentiatingSelaginella guard cells. Protoplasma 177: 37–44

    Google Scholar 

  • Cogswell C (1995) Imaging immunogold labels with confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 507–514

    Google Scholar 

  • —, Larkin KG, O'Byrne JW, Arnison MR (1994) High resolution, multiple optical mode confocal microscope 1: system design, image acquisition and 3D visualization. Proc SPIE 2184: 48–54

    Google Scholar 

  • Cox G (1993) Trends in confocal microscopy. Micron 24: 237–247

    Google Scholar 

  • —, Dibbayawan T (1993) Confocal microscopy of actin, tubulin and chloroplasts: triple labelling with a two-line laser. J Comput Assist Microsc 5: 17–21

    Google Scholar 

  • —, Sheppard C (1993) Effects of image deconvolution on optical sectioning in conventional and confocal microscopes. Bioimaging 1: 82–95

    Google Scholar 

  • Czaban BB, Forer A (1992) Rhodamine-labelled phalloidin stains components in the chromosomal spindle fibres of crane-fly spermatocytes andHaemanthus endosperm cells. Biochem Cell Biol 70: 664–676

    Google Scholar 

  • Delaney PM, Harris MR (1995) Fiberoptics in confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 515–524

    Google Scholar 

  • Del Casino C, Tiezzi A, Wagner VT, Cresti M (1992) The organization of the cytoskeleton in the generative cell and sperms ofHyacinthus orientalis. Protoplasma 168: 41–50

    Google Scholar 

  • Del Vecchio AJ, Harper JDI, Vaughn KC, Baron AT, Salisbury JL, Overall RL (1997) Centrin homologues in higher plants are prominently associated with the developing cell plate. Protoplasma 196: 224–234

    Google Scholar 

  • Demandolx D, Davoust J (1997) Multicolour analysis and local image correlation in confocal microscopy. J Microsc 185: 21–36

    Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248: 73–75

    Google Scholar 

  • —, Piston DW, Webb WW (1995) Two-photon molecular excitation in laser-scanning microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 445–458

    Google Scholar 

  • Derksen J, Rutten T, van Amstel T, de Win A, Doris F, Steer M (1995) Regulation of pollen tube growth. Acta Bot Neerl 44: 93–119

    Google Scholar 

  • de Win AHN, Knuiman B, Pierson ES, Geurts H, Kengen HMP, Derksen J (1996) Development and cellular organisation ofPinus sylvestris pollen tubes. Sex Plant Reprod 9: 93–101

    Google Scholar 

  • Dharmawardhana DP, Ellis BE, Carlson JE (1992) Characterization of vascular lignification inArabidopsis thaliana. Can J Bot 70: 2238–2244

    Google Scholar 

  • Dibbayawan TP, Harper JDI, Gunning BES, Marc J (1995) A γ-tubulin that associates specifically with centrioles in HeLa cells and the basal body complex inChlamydomonas. Cell Biol Int 19: 559–567

    Google Scholar 

  • Dixon AE, Cogswell C (1995) Confocal microscopy with transmitted light. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 479–490

    Google Scholar 

  • Dixon T (1996) Random mask brightens image. Nature 383: 760–761

    Google Scholar 

  • Doris FP, Steer MW (1996) Effects of fixatives and permeabilization buffers on pollen tubes: implications for localisation of actin microfilaments using phalloidin staining. Protoplasma 195: 25–36

    Google Scholar 

  • Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K (1994) Dye-coupling in the root epidermis ofArabidopsis is progressively reduced during development. Development 120: 3247–3255

    Google Scholar 

  • Durso NA, Leslie JD, Cyr RJ (1996) In situ immunocytochemical evidence that a homologue of protein translation elongation factor EF-1α is associated with microtubules in carrot cells. Protoplasma 190: 141–150

    Google Scholar 

  • Fairbairn DJ, Goodbody KC, Lloyd CW (1994) Simultaneous labelling of microtubules and fibrillar bundles in tobacco BY-2 cells by the anti-intermediate filament antibody ME 101. Protoplasma 182: 160–169

    Google Scholar 

  • Flanders DJ, Rawlins DJ, Shaw PJ, Lloyd CW (1990) Nucleus associated microtubules help determine the division plane of plant epidermal cells: avoidance of four-way junctions and the role of cell geometry. J Cell Biol 110: 1111–1122

    Google Scholar 

  • — — — — (1992) Re-establishment of the interphase microtubule array in vacuolated plant cells, studied by laser confocal microscopy and 3-D imaging. Development 110: 897–904

    Google Scholar 

  • Foissner I, Wasteneys GO (1994) Injury toNitella internodal cells alters microtubule organisation but microtubules are not involved in the wound response. Protoplasma 182: 102–114

    Google Scholar 

  • Franklin-Tong VE, Ride JP, Read ND, Trewavas AJ, Franklin FCH (1993) The self-incompatibility response inPapaver rhoeas is mediated by cytosolic free calcium. Plant J 4: 163–177

    Google Scholar 

  • — —, Franklin FCH (1995) Recombinant stigmatic self-incompatibility (S-) protein elicits a Ca2+ transient in pollen ofPapaver rhoeas. Plant J 8: 299–307

    Google Scholar 

  • —, Drøbak BK, Allen AC, Watkins PAC, Trewavas AJ (1996) Growth of pollen tubes ofPapaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-tris phosphate. Plant Cell 8: 1305–1321

    Google Scholar 

  • Fredrikson M (1992) The development of the female gametophyte ofEpipactis (Orchidaceae) and its inference for reproductive ecology. Am J Bot 79: 63–68

    Google Scholar 

  • —, Carlsson K, Franksson O (1988) Confocal scanning laser microscopy, a new technique used in an embryological study ofDactylorchis maculata (Orchidaceae). Nord J Bot 8: 369–374

    Google Scholar 

  • Fricker MD, White NS (1992) Wavelength considerations in confocal microscopy of botanical specimens. J Microsc 166: 29–42

    Google Scholar 

  • —, Blatt MR, White NS (1993) Confocal fluorescence ratio imaging of pH in plant cells. In: Back PH (ed) Biotechnology applications of microinjection, microscopic imaging and fluorescence. Plenum, New York, pp 153–163

    Google Scholar 

  • —, White NS, Thiel G, Millner P, Blatt MR (1994) Peptides derived from the auxin binding protein elevate Ca2+ and pH in stomatal guard cells ofVicia faba: a confocal fluorescence ratio imaging study. Symp Soc Exp Biol 48: 215–228

    Google Scholar 

  • Funada R, Abe H, Furusawa O, Imaizumi H, Fukazawa K, Ohtani J (1997) The orientation and localization of cortical microtubules in differentiating conifer tracheids during cell expansion. Plant Cell Physiol 38: 210–212

    Google Scholar 

  • Gehring CA, Irving HR, Parish RW (1990a) Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci USA 87: 8645–8649

    Google Scholar 

  • —, Williams DA, Cody SH, Parish RW (1990b) Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium. Nature 345: 528–530

    Google Scholar 

  • —, Irving HR, Parish RW (1994) Gibberellic acid induces cytoplasmic acidification in maize coleoptiles. Planta 194: 532–540

    Google Scholar 

  • Gens JS, Rezeau C, Doolittle KW, McNally JG, Pickard BG (1996) Covisualization by computational optical-sectioning microscopy of integrin and associated proteins at the cell membrane of living onion protoplasts. Protoplasma 194: 215–230

    Google Scholar 

  • Gibbon BC, Kropf DL (1994) Cytosolic pH gradients associated with tip growth. Science 263: 1419–1421

    Google Scholar 

  • Gilroy S, Jones RL (1992) Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc Natl Acad Sci USA 89: 3591–3595

    Google Scholar 

  • Goodbody K, Venverloo CJ, Lloyd CW (1992) Laser microsurgery demonstrates that cytoplasmic strands anchoring the nucleus in premitotic plant cells are under tension: implications for division plane alignment. Development 113: 931–939

    Google Scholar 

  • Goode JA, Alfano F, Stead AD, Duckett JG (1993) The formation of aplastidic abscission (tmema) cells and protonemal disruption in the mossBryum tenuisetum Limpr. is associated with transverse arrays of microtubules and microfilaments. Protoplasma 174: 158–172

    Google Scholar 

  • Grabski S, de Feijter AW, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5: 25–38

    Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450

    Google Scholar 

  • Gu X, Verma DPS (1996) Phragmoplastin, a dynamin-like protein associated with cell plate formation in plants. EMBO J 15: 695–704

    Google Scholar 

  • Gunning BES (1992) Use of confocal microscopy to study transitions between successive microtubule arrays in the plant cell division cycle. In: Shibaoka H (ed) Proceedings of the VII International Japanese Prize Symposium on Cellular Basis of Growth and Development in Plants. Osaka University Press, Osaka, pp 145–155

    Google Scholar 

  • Hardham AR, Gubler F, Duniec J, Elliott J (1990) A review of methods for the production and use of monoclonal antibodies to study zoosporic plant pathogens. J Microsc 162: 305–318

    Google Scholar 

  • Haseloff J, Amos B (1995) GFP in plants. Trends Genet 11: 328–329

    Google Scholar 

  • —, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94: 2122–2127

    Google Scholar 

  • Haugland RP (1996) Handbook of fluorescent probes and research chemicals, 6th edn. Molecular Probes, Eugene, OR

    Google Scholar 

  • Hause B, van Veenendaal WLH, Hause G, van Lammeren AAM (1994) Expression of polarity during early development of microspore-derived and zygotic embryos ofBrassica napus L. cv. topas. Bot Acta 107: 407–415

    Google Scholar 

  • Hell SW, Stelzer EHK (1995) Lens aberrations in confocal fluorescence microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 347–354

    Google Scholar 

  • —, Witting S, Schickfus MV, Wijnaendts van Resandt MV, Hunklinger MV, Smolka E, Neiger M (1991) A confocal beam scanning white light microscope. J Microsc 163: 179–187

    Google Scholar 

  • —, Reiner G, Cremer C, Stelzer EHK (1993) Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J Microsc 169: 391–405

    Google Scholar 

  • Hepler PK, Hush JM (1996) Behavior of microtubules in living plant cells. Plant Physiol 112: 455–461

    Google Scholar 

  • —, Cleary AR, Gunning BES, Wadsworth P, Wasteneys GO, Zhang DH (1993) Cytoskeletal dynamics in living plant cells. Cell Biol Int Rep l7: 127–142

    Google Scholar 

  • —, Sek FJ, John PCL (1994) Nuclear concentration and mitotic dispersion of the essential cell cycle protein, p13, examined in living cells. Proc Natl Acad Sci USA 91: 2176–2180

    Google Scholar 

  • Herth W, Reiss H-D, Hartmann E (1990) Role of calcium ions in tip growth of pollen tubes and moss protonema cells. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, San Diego, pp 91–119

    Google Scholar 

  • Highett MI, Rawlins DJ, Shaw PJ (1993a) Different patterns of rDNA distribution inPisum sativum nucleoli correlate with different levels of nucleolar activity. J Cell Sci 104: 843–852

    Google Scholar 

  • —, Beven AF, Shaw PJ (1993b) Localisation of 5S genes and transcripts inPisum sativum nuclei. J Cell Sci 105: 1151–1158

    Google Scholar 

  • Holmes TJ, Bhattacharyya S, Cooper JA, Hanzel D, Krishnamurthi V, Lin W, Roysam B, Szarowski DH, Turner JN (1995) Light microscopic images reconstructed by maximum likelihood deconvolution. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 389–402

    Google Scholar 

  • Houtsmuller A, Oud JL, Van der Voort HTM, Baarslag MW, Krol JJ, Mosterd B, Mans A, Brakenhoff GJ, Nanninga N (1990) Image processing techniques for 3-D chromosome analysis. J Microsc 158: 235–248

    Google Scholar 

  • Hush J, Overall RL (1992) Re-orientation of cortical F-actin is not necessary for wound-induced microtubule re-orientation and cell polarity establishment. Protoplasma 169: 97–106

    Google Scholar 

  • — — (1996) Cortical microtubule reorientation in higher plants: dynamics and regulation. J Microsc 181: 129–139

    Google Scholar 

  • —, Wadsworth P, Callaham DA, Hepler PK (1994) Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J Cell Sci 107: 775–784

    Google Scholar 

  • —, Wu L, John PCL, Hepler LH, Hepler PK (1996) Plant mitosis promoting factor disassembles the microtubule PPB, stimulates chromatin condensation and accelerates NEB in stamen hair cells ofTradescantia. Cell Biol Int 20: 275–287

    Google Scholar 

  • Hyde GJ, Hardham AR (1992) Confocal microscopy of microtubule arrays in cryosectioned sporangia ofPhytophthora cinnamomi. Exp Mycol 16: 207–218

    Google Scholar 

  • — — (1993) Microtubules regulate the generation of polarity in zoospores ofPhytophthora cinnamomi. Eur J Cell Biol 62: 75–85

    Google Scholar 

  • Inoué S (1995) Foundations of confocal scanned imaging in light microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 1–17

    Google Scholar 

  • Juskaitis R, Wilson T, Neil MAA, Kosubek M (1996) Efficient realtime confocal microscopy with white light sources. Nature 383: 804–806

    Google Scholar 

  • Kachar B, Reese TS (1988) The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments. J Cell Biol 106: 1545–1552

    Google Scholar 

  • Kadota A, Wada M (1995) Cytoskeletal aspects of nuclear migration during tip growth in the fernAdiantum protonemal cell. Protoplasma 188: 170–179

    Google Scholar 

  • Keller HE (1995) Objective lenses for confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 111–126

    Google Scholar 

  • Kengen HMP, De Graaf BH (1991) Microtubules and actin filaments co-localize extensively in non-fixed cells of tobacco. Protoplasma 163: 62–65

    Google Scholar 

  • —, van Amstel T, Knuiman B (1993) Basket-shaped structures formed by F-actin in the nuclei of elongating cells ofNicotiana tabacum. Can J Bot 71: 725–731

    Google Scholar 

  • Knebel W, Quader H, Schnepf E (1990) Mobile and immobile endoplasmic reticulum in onion bulb epidermal cells: short and longterm observations with a confocal laser scanning microscope. Eur J Cell Biol 52: 328–340

    Google Scholar 

  • Kobayashi I, Kobayashi Y, Hardham AR (1994) Dynamic reorganisation of microtubules and microfilaments in flax cells during the resistance response to flax rust infection. Planta 195: 237–247

    Google Scholar 

  • Kobori H, Yamada N, Taki A, Osumi M (1989) Actin is associated with the formation of the cell wall in reverting protoplasts of the fission yeastSchizosaccharomyces pombe. J Cell Sci 94: 635–646

    Google Scholar 

  • —, Sato M, Osumi M (1992) Relationship of actin organization to growth in the two forms of the dimorphic yeastCandida tropicalis. Protoplasma 167: 193–204

    Google Scholar 

  • Kochanski RS, Borisy GG (1990) Centriole visualization and tracking in living cells. J Cell Biol 111: 180a

    Google Scholar 

  • Köhler RH, Zipfel WR, Webb WW, Hanson MR (1997a) The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J 11: 613–621

    Google Scholar 

  • —, Cao J, Zipfel WR, Webb WW, Hanson MR (1997b) Exchange of protein molecules through connections between higher plant plastids. Science 276: 2039–2042

    Google Scholar 

  • Koning AJ, Lum PY, Williams JM, Wright R (1993) DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskeleton 25: 111–128

    Google Scholar 

  • Kropf DL, Williamson RE, Wasteneys GO (1997) Microtubule orientation and dynamics in elongating characean internode cells following cytosolic acidification, induction of pH bands, or premature growth arrest. Protoplasma 197: 188–198

    Google Scholar 

  • Lambert A-M (1993) Microtubule-organising centers in higher plants. Curr Opin Cell Biol 5: 116–122

    Google Scholar 

  • —, Lloyd CW (1994) The higher plant microtubule cycle. In: Hyams J, Lloyd CW (eds) Microtubules. Wiley-Liss, New York, pp 325–341

    Google Scholar 

  • —, Vantard M, Schmit A-C, Stoeckel H (1991) Mitosis in plants. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, San Diego, pp 199–208

    Google Scholar 

  • Lancelle SA, Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes ofLilium longiflorum. Protoplasma 167: 215–230

    Google Scholar 

  • —, Cresti M, Hepler PK (1987) Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes ofNicotiana alata. Protoplasma 140: 141–150

    Google Scholar 

  • Lazzaro M, Thomson WW (1996) The vacuolar-tubular continuum in living trichomes of chickpea (Cicer arietinum) provides a rapid means of solute delivery from base to tip. Protoplasma 193: 181–190

    Google Scholar 

  • Lichtscheidl IK, Hepler PK (1996) Endoplasmic reticulum in the cortex of plant cells. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. Bios Scientific Publishers, Oxford, pp 383–402

    Google Scholar 

  • Liebe S, Menzel D (1995) Actomyosin-based motility of endoplasmic reticulum and chloroplast inVallisneria mesophyll cells. Biol Cell 85: 207–222

    Google Scholar 

  • —, Quader H (1994) Myosin in onion (Allium cepa) bulb epidermal cells: involvement in dynamics of organelles and endoplasmic reticulum. Physiol Plant 90: 114–124

    Google Scholar 

  • Liou W-S, Pan S-J, Cheng PC (1995) On-line attenuation compensation in confocal microscopy. Zool Stud 34 Suppl 1: 47–49

    Google Scholar 

  • Liu B, Palevitz B (1992a) Anaphase chromosome separation in dividing generative cells ofTradescantia: changes in microtubule organization and kinetochore distribution visualized by antitubulin and CREST immunocytochemistry. Protoplasma 166: 122–133

    Google Scholar 

  • — — (1992b) Organization of cortical microfilaments in dividing root cells. Cell Motil Cytoskeleton 23: 252–264

    Google Scholar 

  • —, Joshi H, Wilson TJ, Silflow CD, Palevitz BA, Snustad P (1994) γ-Tubulin inArabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6: 303–314

    Google Scholar 

  • Liu Z, Bushnell WR, Brambl R (1987) Potentiometric cyanine dyes are sensitive probes for mitochondria in intact plant cells: kinetin enhances mitochondrial fluorescence. Plant Physiol 84: 1385–1390

    Google Scholar 

  • Lloyd CW (1987) The plant cytoskeleton: the impact of fluorescence microscopy. Annu Rev Plant Physiol 38: 119–139

    Google Scholar 

  • — (1994) Why should stationary plant cells have such dynamic microtubules? Mol Biol Cell 5: 1277–1280

    Google Scholar 

  • —, Venverloo CJ, Goodbody K, Shaw PJ (1992) Confocal laser microscopy and three dimensional reconstruction of nucleusassociated microtubules in the division plane of vacuolated plant cells. J Microsc 166: 99–110

    Google Scholar 

  • Lloyd CW, Shaw PJ, Warn RM, Yuan M (1996) Gibberellic acidinduced reorientation of cortical microtubules in living plant cells. J Microsc 181: 140–144

    Google Scholar 

  • Lucas L, Gilbert N, Ploton D, Bonnet N (1996) Visualization of volume data in confocal microscopy: comparison and improvements of volume rendering methods. J Microsc 181: 238–252

    Google Scholar 

  • Macnaughton SJ, Booth T, Embley TM, O'Donnell AG (1996) Physical stabilization and confocal microscopy of bacteria on roots using rRNA-targeted, fluorescent-labeled oligonucleotide probes. J Microbiol Methods 26: 279–285

    Google Scholar 

  • Maiti S, Shear JB, Williams RM, Zipfel WR, Webb WW (1997) Measuring serotonin distribution in live cells with three-photon excitation. Science 275: 530–532

    Google Scholar 

  • Malhó R, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8: 1935–1949

    Google Scholar 

  • —, Read ND, Pais MS, Trewavas AJ (1994) Role of cytosolic free calcium in the reorientation of pollen tube growth. Plant J 5: 331–341

    Google Scholar 

  • —, Read ND, Trewavas AJ, Pais MS (1995) Calcium channel activity during pollen tube growth and reorientation. Plant Cell 7: 1173–1184

    Google Scholar 

  • Malik Z, Cabib D, Buckwald RA, Talmi A, Garini Y, Lipson SG (1996) Fourier transform multipixel spectroscopy for quantitative cytology. J Microsc 182: 133–140

    Google Scholar 

  • Martinez-Nistal A, Gonzalez-Rio F, Alonzo-Guervos M, Astorga R, Sampedro A (1996) Quantification of wood fibre morphology using confocal laser scanning microscopy and image processing. Proc Microsc Soc 31: 235

    Google Scholar 

  • Matsumoto B (1993) Cell biological applications of confocal microscopy. Methods Cell Biol 38: 1–375

    Google Scholar 

  • McCauley MM, Hepler PK (1990) Visualization of the endoplasmic reticulum in living buds and branches of the mossFunaria hygrometrica by confocal laser scanning microscopy. Development 109: 753–764

    Google Scholar 

  • Meindl U, Zhang DH, Hepler PK (1994) Spatial organization and dynamics of the cytoskeleton in living cells ofMicrasterias. J Cell Sci 107: 1929–1934

    Google Scholar 

  • Menzel D (1994a) Cell differentiation and the cytoskeleton inAcetabularia. Tansley Review no 77. New Phytol 128: 369–393

    Google Scholar 

  • — (1994) An interconnected plastidom inAcetabularia: implications for the mechanism of chloroplast motility. Protoplasma 179: 166–171

    Google Scholar 

  • — (1994b) Dynamics and pharmacological perturbations of the endoplasmic reticulum in the unicellular green algaAcetabularia. Eur J Cell Biol 64: 113–119

    Google Scholar 

  • —, Jonitz H, Eisner-Menzel C (1996) The perinuclear microtubule system in the green algaAcetabularia: anchor or motility device? Protoplasma 193: 63–76

    Google Scholar 

  • Merdes A, Stelzer EHK, DeMey J (1991) The three-dimensional architecture of the mitotic spindle, analyzed by confocal fluorescence and electron microscopy. J Electron Microsc Tech 18: 61–73

    Google Scholar 

  • Meske V, Ruppert V, Hartmann E (1996) Structural basis for the red light induced repolarization of tip growth in caulonema cells ofCeratodonpurpureus. Protoplasma 192: 189–198

    Google Scholar 

  • Miller DD, Scordilis SP, Hepler PK (1995) Identification and localization of three classes of myosins in pollen tubes ofLilium longiflorum and Nicotiana alata. J Cell Sci 108: 2549–2563

    Google Scholar 

  • —, Lancelle SA, Hepler PK (1996) Actin microfilaments do not form a dense meshwork inLilium longiflorum pollen tube tips. Protoplasma 195: 123–132

    Google Scholar 

  • Mineyuki Y, Aioi H, Yamashita M, Nagahama Y (1996) A comparative study on stainability of preprophase bands by the PSTAIR antibody. J Plant Res 109: 185–192

    Google Scholar 

  • Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10: 128–138

    Google Scholar 

  • Montijn AB, Houtsmuller A, Oud JL, Nanninga N (1994) The spatial localisation of 18S rRNA genes, in relation to the descent of the cells, in the root cortex ofPetunia hybrida. J Cell Sci 107: 457–467

    Google Scholar 

  • Muńoz CA, Webster BD, Jernstedt JA (1995) Spatial congruence between exine pattern, microtubules and endomembranes inVigna pollen. Sex Plant Reprod 8: 147–151

    Google Scholar 

  • Murata T (1996) Organization of microtubules during the transition from cytokinesis to interphase in protonemal cells ofAdiantum capillus-veneris L. Plant Cell Physiol 37: 263–272

    Google Scholar 

  • Nagata T, Kumagai F, Hasezawa S (1994) The origin and organization of cortical microtubules during the transition between M and G1 phases of the cell cycle as observed in highly synchronized cells of tobacco BY-2. Planta 193: 567–572

    Google Scholar 

  • Nagelkerke JF, De Bont HJGM (1996) Upgrading of a BioRad MRC-600 confocal laser scanning microscope with a 543-nm and a 633-nm HeNe laser. J Microsc 184: 58–61

    Google Scholar 

  • Nanninga N, Oud JL, Houtsmuller A, Mans A, Montijn B (1992) Spatial arrangement of genes and chromosomes in plants: comments on cell genealogy and tissue specificity. Cell Biol Int Rep 16: 761–770

    Google Scholar 

  • Napier RM, Fowke LC, Hawes C, Lewis M, Pelham HRB (1992) Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci 102: 261–271

    Google Scholar 

  • Nogami A, Suzaki T, Shigenaka Y, Nagahama Y, Mineyuki Y (1996) Effects of cycloheximide on preprophase bands and prophase spindles in onion (Allium cepa L.) root tip cells. Protoplasma 192: 109–121

    Google Scholar 

  • Noguchi J, Fukui K (1995) Chromatin arrangements in intact interphase nuclei examined by laser confocal microscopy. J Plant Res 108: 209–216

    Google Scholar 

  • Oparka K, Duckett CM, Prior DAM, Fischer DB (1994a) Real-time imaging of phloem unloading in the root tip ofArabidopsis. Plant J 6: 759–766

    Google Scholar 

  • —, Prior DAM, Crawford JW (1994b) Behaviour of plasma membrane, cortical ER and plasmodesmata during plasmolysis of onion epidermal cells. Plant Cell Environ 17: 163–171

    Google Scholar 

  • — —, Wright KM (1995a) Symplastic communication between primary and developing lateral roots ofArabidopsis thaliana. J Exp Bot 46: 187–197

    Google Scholar 

  • —, Roberts AG, Prior DAM, Chapman S, Baulcombe D, Santa Cruz S (1995b) Imaging the green fluorescent protein in plants: viruses carry the torch. Protoplasma 189: 133–141

    Google Scholar 

  • Opas M (1997) Measurement of intracellular pH and pCa with a confocal microscope. Trends Cell Biol 7: 75–80

    Google Scholar 

  • —, Tharin S, Milner RE, Michalak M (1996) Identification and localization of calreticulin in plant cells. Protoplasma 191: 164–171

    Google Scholar 

  • Oud JL, Nanninga N (1992) Cell shape, chromosome orientation and the position of the plane of division inVicia faba root cortex cells. J Cell Sci 103: 847–855

    Google Scholar 

  • —, Mans A, Brakenhoff GJ, Van der Voort HTM, Van Spronsen EA, Nanninga N (1989) Three-dimensional chromosome arrangement ofCrepis capillaris in mitotic prophase and anaphase as studied by confocal laser scanning microscopy. J Cell Sci 92: 329–339

    Google Scholar 

  • Pawley JB (ed) (1995a) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York

    Google Scholar 

  • — (1995b) Fundamental limits in confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 19–38

    Google Scholar 

  • Peat L, Oliveira L (1994) Organization of the cytoskeleton in the coenocytic algaVaucheria longicaulis varmacounii: an experimental study. Protoplasma 177: 95–107

    Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6: 1815–1828

    Google Scholar 

  • — — —, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174: 160–173

    Google Scholar 

  • Piston DW, Masters BR, Webb WW (1995a) Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two photon excitation laser scanning microscopy. J Microsc 178: 20–27

    Google Scholar 

  • — —, Ying G (1995b) Imaging of cellular dynamics by two-photon excitation microscopy. J Microsc Soc Am 1: 25–34

    Google Scholar 

  • Quader H (1990) Formation and disintegration of cisternae of the endoplasmic reticulum visualized in live cells by conventional fluorescence and confocal laser scanning microscopy: evidence for the involvement of calcium and the cytoskeleton. Protoplasma 155: 166–175

    Google Scholar 

  • —, Fast H (1990) Influence of cytosolic pH changes on the organization of the endoplasmic reticulum in epidermal cells of onion bulb scales: acidification by loading with weak organic acids. Protoplasma 157: 216–224

    Google Scholar 

  • —, Schnepf E (1986) Endoplasmic reticulum and cytoplasmic streaming: fluorescence microscopical observations in adaxial epidermis cells of onion bulb scales. Protoplasma 131: 250–252

    Google Scholar 

  • —, Hofmann A, Schnepf E (1989) Reorganization of the endoplasmic reticulum in epidermal cells of onion bulb scales after cold stress: involvement of cytoskeletal elements. Planta 177: 273–280

    Google Scholar 

  • Rawlins DJ, Highett MI, Shaw PJ (1991) Localization of telomeres in plant interphase nuclei by in situ hybridization and 3D confocal microscopy. Chromosoma 100: 424–431

    Google Scholar 

  • Read ND, Allan WTG, Knight H, Knight MR, Malhó R, Russell A, Shacklock PS, Trewavas AJ (1992) Imaging and measurement of cytosolic free calcium in plant and fungal cells. J Microsc 166: 57–86

    Google Scholar 

  • Roberson RW, Vargas MM (1994) The tubulin cytoskeleton and its sites of nucleation in hyphal tips ofAllomyces macrogynus. Protoplasma 182: 19–31

    Google Scholar 

  • Roos W (1992) Confocal pH topography in plant cells: acidic layers in the peripheral cytoplasm and apoplast. Bot Acta 105: 253–259

    Google Scholar 

  • Rusig A-M, Le Guyader H, Ducreux G (1994) Dedifferentiation and microtubule reorganization in the apical cell protoplast ofSphacelaria (Phaeophyceae). Protoplasma 179: 83–93

    Google Scholar 

  • Running MP, Clark SE, Meyerowitz EM (1995) Confocal microscopy of the shoot apex. Methods Cell Biol 49: 217–230

    Google Scholar 

  • Rutten TLM, Derksen J (1992) Microtubules in pollen tube subprotoplasts: organisation during protoplast formation and protoplast outgrowth. Protoplasma 167: 231–237

    Google Scholar 

  • Sako Y, Sekihata A, Yanagisawa Y, Yamamoto M, Shimada Y, Ozaki K, Kusumi A (1997) Comparison of two-photon excitation laser scanning microscopy with UV-confocal laser scanning microscopy in three-dimensional calcium imaging using the fluorescence indicator Indo-1. J Microsc 185: 9–20

    Google Scholar 

  • Sandison DR, Williams RM, Wells KS, Strickler J, Webb WW (1995) Quantitative fluorescence confocal laser scanning microscopy (CLSM). In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 39–54

    Google Scholar 

  • Sanwo MM, DeMason DA (1992) Characterization of a-amylase during germination of two high-sugar sweet corn cultivars ofZea mays L. Plant Physiol 99: 1184–1192

    Google Scholar 

  • Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C (1996a) Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microsc 181: 162–177

    Google Scholar 

  • —, Steele C, Hawes C (1996b) Golgi-membrane dynamics are cytoskeleton dependent: a study on Golgi stack movement induced by brefeldin A. Protoplasma 191: 21–33

    Google Scholar 

  • Schmit A-C, Endlé M-C, Lambert A-M (1996) The perinuclear microtubule organizing center and the synaptonemal complex of higher plants share a common antigen: its putative transfer and role in meiotic chromosomal ordering. Chromosoma 104: 405–413

    Google Scholar 

  • Schopfer CR, Hepler PK (1991) Distribution of membranes and the cytoskeleton during cell plate formation in pollen mother cells ofTradescantia. J Cell Sci 100: 717–728

    Google Scholar 

  • Schulz A (1992) Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy. Protoplasma 166: 153–164

    Google Scholar 

  • Shacklock PS, Read ND, Trewavas AJ (1992) Cytosolic free calcium mediates red light-induced photomorphogenesis. Nature 358: 753–755

    Google Scholar 

  • Shaw PJ (1993) Computer reconstruction in three-dimensional fluorescence microscopy. In: Shotton DM (ed) Electronic light microscopy: the principles and practice of video-enhanced contrast, digital intensified fluorescence, and confocal scanning light microscopy. Wiley-Liss, New York, pp 211–230

    Google Scholar 

  • — (1995) Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 373–388

    Google Scholar 

  • —, Rawlins DJ (1991) The point spread function of a confocal microscope: its measurement and use in deconvolution of 3D data. J Microsc 163: 151–165

    Google Scholar 

  • —, Fairbairn DJ, Lloyd CW (1991) Cytoplasmic and nuclear intermediate filament antigens in higher plant cells. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, New York, pp 69–81

    Google Scholar 

  • —, Highett MI, Rawlins DJ (1992) Confocal microscopy and image processing in the study of plant nuclear structure. J Microsc 166: 87–97

    Google Scholar 

  • —, Beven AF, Wells B, Highett MI, Jordan EG (1996) The organization of nucleolar activity in plants. J Microsc 181: 178–185

    Google Scholar 

  • Shotton DM (1989) Confocal scanning optical microscopy and its applications for biological specimens. J Cell Sci 94: 175–206

    Google Scholar 

  • Shotton DM (ed) (1993) Electronic light microscopy: the principles and practice of video-enhanced contrast, digital intensified fluorescence, and confocal scanning light microscopy. Wiley-Liss, New York

    Google Scholar 

  • Staiger CJ, Yuan M, Valenta R, Shaw PJ, Warn RM, Lloyd CW (1994) Microinjected profilin affects cytoplasmic streaming in plant cells by rapidly depolymerizing actin microfilaments. Curr Biol 4: 215–219

    Google Scholar 

  • Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111: 323–358

    Google Scholar 

  • Suzuki T, Fujikura K, Higashiyama T, Takata K (1997) DNA staining for fluorescence and laser confocal microscopy. J Histochem Cytochem 45: 49–53

    Google Scholar 

  • Straatman KR, Trompetter CM, Schul W, Schel JHN (1996) Fluorescent labelling of nascent RNA reveals nuclear transcription domains throughout plant cell nuclei. Protoplasma 192: 145–149

    Google Scholar 

  • Taylor DP, Slattery J, Leopold AC (1996) Apoplastic pH in corn root gravitropism: a laser scanning confocal microscopy measurement. Physiol Plant 97: 35–38

    Google Scholar 

  • Terasaka O, Niitsu T (1995) The mitotic apparatus during unequal microspore division observed by a confocal laser scanning microscope. Protoplasma 189: 187–193

    Google Scholar 

  • Terasaki M, Dailey ME (1995) Confocal microscopy of living cells. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 327–346

    Google Scholar 

  • Thiel G, Blatt MR, Fricker MD, White IR, Millner P (1993) Modulation of K+ channels inVicia stomatal guard cells by peptide homologues to the auxin-binding protein C terminus. Proc Natl Acad Sci USA 90: 11493–11497

    Google Scholar 

  • Timmers ACJ, Reiss H-D, Bohsung J, Travel K, Schel JHN (1996) Localization of calcium during somatic embryogenesis of carrot (Daucuscarota L.). Protoplasma 190: 107–118

    Google Scholar 

  • Tirlapur UK, Kranz E, Cresti M (1995) Characterization of isolated egg cells, in vitro fusion products and zygotes of Zeamays L. using the technique of image analysis and confocal laser scanning microscopy. Zygote 3: 57–64

    Google Scholar 

  • Tiwari SC, Polito VS (1988) Organization of the cytoskeleton in pollen tubes ofPyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence, and rhodamine-phalloidin. Protoplasma 147: 100–112

    Google Scholar 

  • Tsien RY, Bacskai BJ (1995) Video-rate confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 459–478

    Google Scholar 

  • —, Waggoner A (1995) Fluorophores for confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 267–280

    Google Scholar 

  • Valster AH, Hepler PK (1997) Caffeine inhibition of cytokinesis: phragmoplast cytoskeleton dynamics in livingTradescantia stamen hair cells. Protoplasma 196: 155–166

    Google Scholar 

  • —, Pierson ES, Valenta R, Hepler PK, Emons AMC (1997) Probing the plant-actin cytoskeleton during cytokinesis and interphase by profilin microinjection. Plant Cell 9: 1815–1824

    Google Scholar 

  • van der Voort HTM, Strasters KC (1995) Restoration of confocal images for quantitative image analysis. J Microsc 178: 165–181

    Google Scholar 

  • van Spronsen EA, Sarafis V, Brakenhoff GJ, van der Voort HTM, Nanninga N (1989) Three dimensional structure of living chloroplasts as visualized by confocal scanning laser microscopy. Protoplasma 148: 8–14

    Google Scholar 

  • Verbelen J-P, Stickens D (1995) In vivo determination of fibril orientation in plant cell walls with polarization CSLM. J Microsc 177: 1–6

    Google Scholar 

  • Verma DPS, Gu X (1996) Vesicle dynamics during cell-plate formation in plants. Trends Plant Sci l: 145–149

    Google Scholar 

  • Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128: 779–792

    Google Scholar 

  • Vidali L, Hepler PK (1997) Profilin characterization and localization in pollen tubes ofLilium longiflorum. Cell Motil Cytoskeleton 36: 323–338

    Google Scholar 

  • Villanueva MA, Taylor J, Sui X-M, Griffing L (1993) Endocytosis in plant protoplasts: visualization and quantitation of fluid-phase endocytosis using silver-enhanced bovine serum albumin-gold. J Exp Bot 44 Suppl: 273–281

    Google Scholar 

  • Walker LM, Sack F (1995) Microfilament distribution in protonemata of the mossCeratodon. Protoplasma 189: 229–237

    Google Scholar 

  • Wang G, Liou WS, Lin TH, Cheng PC (1994) Image restoration in light microscopy. In: Cheng PC, Lin TH, Wu WL, Wu JL (eds) Multidimensional microscopy. Springer, Berlin Heidelberg New York Tokyo, pp 127–141

    Google Scholar 

  • Wang Y-L, Sanders MC (1990) Analysis of cytoskeletal structures by the microinjection of fluorescence probes. In: Foskett JK, Grinstein S (eds) Noninvasive techniques in cell biology. Wiley-Liss, New York, pp 177–212

    Google Scholar 

  • Wasteneys GO, Gunning BES, Hepler PK (1993) Microinjection of fluorescent brain tubulin reveals dynamic properties of cortical microtubules in living plant cells. Cell Motil Cytoskeleton 24: 205–213

    Google Scholar 

  • —, Collings DA, Gunning BES, Hepler PK, Menzel D (1996) Actin in living and fixed characean internodal cells: identification of a cortical array of fine actin strands and chloroplast actin rings. Protoplasma 190: 25–38

    Google Scholar 

  • Webb RH (1995) Bibliography of confocal microscopes. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 571–577

    Google Scholar 

  • —, Dorey CK (1995) The pixilated image. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 55–68

    Google Scholar 

  • White JG, Amos WB, Fordham M (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105: 41–48

    Google Scholar 

  • White NS (1995) Visualization systems for multidimensional CLSM images. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York, pp 211–254

    Google Scholar 

  • —, Errington RJ, Fricker MD, Wood JL (1996) Aberration control in quantitative imaging of botanical specimens by multidimensional fluorescence microscopy. J Microsc 181: 99–116

    Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180: 169–184

    Google Scholar 

  • Wick SM, Seagull RW, Osborn M, Weber K, Gunning BES (1981) Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J Cell Biol 89: 685–690

    Google Scholar 

  • Williams DA, Cody SH, Gehring CA, Parish RW, Harris PJ (1990) Confocal imaging of ionised calcium in living plant cells. Cell Calcium 11: 291–297

    Google Scholar 

  • Williamson RE (1991) Orientation of cortical microtubules in interphase plant cells. Int Rev Cytol 129: 135–206

    Google Scholar 

  • Wilson T (ed) (1990) Confocal microscopy. Academic Press, San Diego

    Google Scholar 

  • Wymer C, Lloyd CW (1996) Dynamic microtubules: implications for cell wall patterns. Trends Plant Sci l: 222–227

    Google Scholar 

  • Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Proc Natl Acad Sci USA 91: 6050–6053

    Google Scholar 

  • —, Warn RM, Shaw PJ, Lloyd CW (1995) Dynamic microtubules under the radial and outer tangential walls of microinjected pea epidermal cells observed by computer reconstruction. Plant J 7: 17–23

    Google Scholar 

  • Zee SY (1992) Confocal laser scanning microscopy of microtubule organisational changes in isolated generative cells ofAllemanda neriifolia during mitosis. Sex Plant Reprod 5: 182–188

    Google Scholar 

  • —, Ye XL (1995) Changes in the pattern of organization of the microtubular cytoskeleton during megasporogenesis inCymbidium sinense. Protoplasma 185: 170–177

    Google Scholar 

  • Zhang DH, Wadsworth P, Hepler PK (1990) Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87: 8825–8829

    Google Scholar 

  • — — — (1992) The modulation of spindle structure by calcium and related signaling agents during anaphase in living stamen hair cells ofTmdescantia. J Cell Sci 102: 79–89

    Google Scholar 

  • — — — (1993) Dynamics of microfilaments are similar but distinct from microtubules during cytokinesis in living, dividing plant cells. Cell Motil Cytoskeleton 24: 205–213

    Google Scholar 

  • Zhang H-Q, Bohdanowicz J, Pierson ES, Li Y-Q, Tiezzi A, Cresti M (1995) Microtubular organization during asymmetrical division of the generative cell inGagea lutea. J Plant Res 108: 269–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hepler, P.K., Gunning, B.E.S. Confocal fluorescence microscopy of plant cells. Protoplasma 201, 121–157 (1998). https://doi.org/10.1007/BF01287411

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01287411

Keywords

Navigation