Skip to main content
Log in

Colony formation and inversion in the green algaEudorina elegans

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

During development of daughter coenobia in the volvocalean algaEudorina a rapid synchronized series of mitotic divisions and cytokineses gives rise to a slightly cup-shaped, patterned array of 16 or 32 cells, the plakea; the nuclei and centrioles of each cell lying at the concave face and the plastids at the convex face. Each cell is connected to its neighbours by cytoplasmic bridges. All cells within a plakea simultaneously elongate and enlarge their nuclear poles; while remaining interconnected by the cytoplasmic bridges at their plastid poles. The result is inversion of the developing coenobia so that the nuclei and centrioles come to lie on the convex, outer surface. Inversion is inhibited by colchicine and cytochalasin B. Both lengthening of the cells and expansion of their nuclear end is apparently mediated by microtubules. Striations on the plasmalemma encircling the bridges are thought to stablize the membrane at these sites during inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bisalputra, T., andJ. R. Stein, 1966: The development of cytoplasmic bridges inVolvox aureus. Canad. J. Bot.44, 1697–1702.

    Google Scholar 

  • Bouck, G. B., andD. L. Brown, 1973: Microtubule biogenesis and cell shape inOchromonas. 1. The distribution of cytoplasmic and mitotic microtubules. J. Cell Biol.56, 340–359.

    PubMed  Google Scholar 

  • Bradley, M. O., 1973: Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J. Cell Sci.12, 327–343.

    PubMed  Google Scholar 

  • Brown, D. L., andG. B. Bouck, 1974: Microtubule biogenesis and cell shape mOchromonas. III. Effects of the herbicidal mitotic inhibitor isopropyl N-phenycarbamate on shape and flagellum regeneration. J. Cell Biol.61, 514–536.

    PubMed  Google Scholar 

  • Burnside, B., 1971: Microtubules and microfilaments in newt neurulation. Develop. Biol.26, 416–441.

    PubMed  Google Scholar 

  • Byers, B., andL. Goetsch, 1976: A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol.69, 717–721.

    PubMed  Google Scholar 

  • Conrad, W., 1913: Observations surEudorina elegans Ehrenb. Rec. Inst. Bot. Bruxelle9, 321–343.

    Google Scholar 

  • Coss, R. A., 1974: Mitosis inChlamydomonas reinhardtii basal bodies and the mitotic apparatus. J. Cell Biol.63, 325–329.

    PubMed  Google Scholar 

  • Deason, T. R., andW. H. Darden, Jr., 1971: The male initial and mitosis inVolvox. In: Contributions in phycology (Parker, B. C., andR. M. Brown, Jr., eds.), pp. 67–79. Kansas: Allen Press.

    Google Scholar 

  • Dolzmann, R., undP. Dolzmann, 1964: Untersuchungen über die Feinstruktur und die Funktion der Plasmodesmen vonVolvox aureus. Planta (Berl.)61, 332–345.

    Google Scholar 

  • Gerisch, G., 1959: Die Zelldifferenzierung beiPleodorina californica Shaw und die Organisation der Phytomonadinenkolonien. Arch. Protistenk.104, 292–358.

    Google Scholar 

  • Gibbins, J. R., L. G. Tilney, andK. R. Porter, 1969: Microtubules in the formation and development of the primary mesenchyme inArbacia punctulata. I. The distribution of microtubules. J. Cell Biol.41, 201–226.

    PubMed  Google Scholar 

  • Goldstein, M., 1964: Speciation and mating behaviour inEudorina. J. Protozool.11, 317–344.

    Google Scholar 

  • —, 1967: Colony differentiation inEudorina. Canad. J. Bot.45, 1591–1596.

    Google Scholar 

  • Granholm, N. H., andJ. R. Baker, 1970: Cytoplasmic microtubules and the mechanism of avian gastrulation. Develop. Biol.23, 563–584.

    PubMed  Google Scholar 

  • Harper, R. A., 1912: The structure and development of the colony inGonium. Trans. Amer. Micros. Soc.31, 65–85.

    Google Scholar 

  • Hartmann, M., 1924: Über die Veränderung der Koloniebildung vonEudorina elegans undGonium pectorale unter dem Einfluß äußerer Bedingungen. Arch. Protistenk.59, 375–395.

    Google Scholar 

  • Hepler, P. K., andB. A. Palevitz, 1974: Microtubules and microfilaments. Ann. Rev. Plant Physiol.25, 309–362.

    Google Scholar 

  • Hobbs, M. J., 1971: The fine structure ofEudorina illinoiensis (Kofoid) Pascher. Br. phycol. J.6, 81–103.

    Google Scholar 

  • Ikushima, N., andS. Maruyama, 1968: The protoplasmic connection inVolvox. J. Protozool.15, 136–140.

    Google Scholar 

  • Johnson, U. G., andK. R. Porter, 1968: Fine structure of cell division inChlamydomonas reinhardi. J. Cell Biol.38, 403–425.

    PubMed  Google Scholar 

  • Lewis, J. H., andL. Wolpert, 1976: The principle of non-equivalence in development. J. theor. Biol.62, 479–490.

    PubMed  Google Scholar 

  • Marchant, H. J., 1974 a: Mitosis, cytokinesis and colony formation inPediastrum boryanum. Ann. Bot.38, 883–888.

    Google Scholar 

  • —, 1974 b: Mitosis, cytokinesis, and colony formation in the green algaSorastrum. J. Phycol.10, 107–120.

    Google Scholar 

  • —, 1976 a: Plasmodesmata in algae and fungi. In: Intercellular communication in plants: Studies on plasmodesmata (Gunning, B. E. S., andA. W. Robards, eds.), pp. 59–80. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • —, 1976 b: Actin in the green algaeColeochaete andMougeotia. Planta (Berl.)131, 119–120.

    Google Scholar 

  • Morse, D. C., 1943: Some details of asexual reproduction inPandorina morum. Trans. Amer. Micros. Soc.62, 24–26.

    Google Scholar 

  • Palevitz, B. A., andP. K. Hepler, 1975: Identification of actinin situ at the ectoplasm— endoplasm interface ofNitella. J. Cell Biol.65, 29–38.

    PubMed  Google Scholar 

  • Pickett-Heaps, J. D., 1970: Some ultrastructural features ofVolvox, with particular reference to the phenomenon of inversion. Planta (Berl.)90, 174–190.

    Google Scholar 

  • —, 1973: Cell division inTetraspora. Ann. Bot.37, 1017–1025.

    Google Scholar 

  • —, 1975: Green algae: Structure, function and evolution in selected genera. Sunderland, Mass.: Sinauer Assoc.

    Google Scholar 

  • Pocock, M. A., 1933:Volvox in South Africa. Ann. S. Afr. Mus.16, 523–646.

    Google Scholar 

  • —, 1960:Hydrodictyon: a comparative biological study. J. S. Afr. Bot.26, 167–319.

    Google Scholar 

  • Spurr, A. R., 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–49.

    PubMed  Google Scholar 

  • Stein, J. R., 1965: On cytoplasmic strands inGonium pectorale (Volvocales). J. Phycol.1, 1–5.

    Google Scholar 

  • Taft, C. E., 1941: Inversion of the developing coenobium inPandorina morum Bory. Trans. Amer. Micros. Soc.60, 327–328.

    Google Scholar 

  • Tilney, L. G., andJ. R. Gibbins, 1969: Microtubules in the formation and development of the primary mesenchyme inArbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J. Cell Biol.41, 227–250.

    PubMed  Google Scholar 

  • Treimer, R. E., andR. M. Brown, Jr., 1974: Cell division inChlamydomonas moewusii. J. Phycol.10, 419–433.

    Google Scholar 

  • Williamson, R. E., 1974: Actin in the alga,Chara corallina. Nature248, 801–802.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchant, H.J. Colony formation and inversion in the green algaEudorina elegans . Protoplasma 93, 325–339 (1977). https://doi.org/10.1007/BF01275663

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01275663

Keywords

Navigation