Skip to main content
Log in

Network flow and 2-satisfiability

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present two algorithms for network flow on networks with infinite capacities and finite integer supplies and demands. The first algorithm runs inO(m√K) time on networks withm edges, whereK=O(m2/log4 m) is the value of the optimal flow, and can also be applied to the capacitated case by lettingK be the sum of thefinite capacities alone. The second algorithm runs inO(wm logK) time for arbitraryK, where w is a new parameter, thewidth of the network. These algorithms as well as other uses of the notion of width lead to results for several questions on the 2-satisfiability problem: minimizing the weight of a solution, finding the transitive closure, recognizing partial solutions, enumerating all solutions. The results have applications to stable matching, wherew corresponds to the number of people andm to the instance size (usuallym ≈ w2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Ahuja, J. B. Orlin, and R. E. Tarjan, Improved Time Bounds for the Maximum Flow Problem, Technical Report CS-TR-118-87, Department of Computer Science, Princeton University, 1987. (SIAM J. Comput., to appear.)

  2. R. Bar-Yehuda and S. Even, A linear time approximation algorithm for the weighted vertex cover problem,J. Algorithms,2 (1981), 198–203.

    Google Scholar 

  3. K. Clarkson, A modification of the greedy algorithm for vertex cover,Inform. Process. Lett.,16 (1983), 23–25.

    Google Scholar 

  4. R. P. Dilworth, A decomposition theorem for partially ordered sets,Ann. of Math.,51 (1950), 161–166.

    Google Scholar 

  5. E. A. Dinic, Algorithm for solution of a problem of maximum flow in a network with power estimation,Soviet Math. Dokl.,11 (1970), 1277–1280.

    Google Scholar 

  6. S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow problems,SIAM J. Comput.,5 (1976), 691–703.

    Google Scholar 

  7. T. Feder, A new fixed point approach for stable networks and stable marriages,Proc. 21st ACM Symp. on Theory of Computing (1989), pp. 513–522. (Submitted toJ. Comput. System Sci.)

  8. T. Feder, Stable Networks and Product Graphs, Ph.D. dissertation, Technical Report STAN-CS-91-1362, Stanford University (1991).

  9. D. Gale and L. S. Shapley, College admissions and the stability of marriage,Amer. Math. Monthly,69 (1962), 9–15.

    Google Scholar 

  10. A. V. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem,Proc. 18th ACM Symp. on Theory of Computing (1986), pp. 136–146.

  11. A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by successive approximation,Math. Oper. Res.,15(3) (1990), 430–466.

    Google Scholar 

  12. D. Gusfield, Three fast algorithms for four problems in stable marriage,SIAM J. Comput.,16(1) (1987), 111–128.

    Google Scholar 

  13. D. Gusfield, The structure of the stable roommate problem: efficient representation and enumeration of all stable assignments,SIAM J. Comput.,17(4) (1988), 742–769.

    Google Scholar 

  14. D. Gusfield and R. W. Irving, The parametric stable marriage problem,Inform. Process. Lett.,30 (1989), 255–259.

    Google Scholar 

  15. D. Gusfield and R. W. Irving,The Stable Marriage Problem: Structure and Algorithms, MIT Press Series in the Foundations of Computing, MIT Press, Cambridge, MA (1989).

    Google Scholar 

  16. D. Gusfield, R. Irving, P. Leather, and M. Saks, Every finite distributive lattice is a set of stable matchings for a small stable marriage,J. Combin. Theory Ser. A,44 (1987), 304–309.

    Google Scholar 

  17. D. Gusfield and L. Pitt, Equivalent approximation algorithms for node cover,Inform. Process. Lett.,22(6) (1986), 291–294.

    Google Scholar 

  18. D. Gusfield and L. Pitt, A Bounded Approximation for the Minimum Cost 2-SAT Problem, Technical Report CSE-89-4, University of California, Davis (1989).

    Google Scholar 

  19. F. Harary,Graph Theory, Addison-Wesley, Reading, MA.

  20. D. S. Hochbaum, Approximation algorithms for the set covering and vertex cover problems,SIAM J. Comput.,11(3) (1982), 555–556.

    Google Scholar 

  21. J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matching in bipartite graphs,SIAM J. Comput.,2 (1973), 225–231.

    Google Scholar 

  22. R. W. Irving and P. Leather, The complexity of counting stable marriages,SIAM J. Comput.,15(3) (1986), 655–667.

    Google Scholar 

  23. R. W. Irving, P. Leather, and D. Gusfield, An efficient algorithm for the optimal stable marriage,J. Assoc. Comput. Mach.,34(3) (1987), 532–543.

    Google Scholar 

  24. D. E. Knuth,Mariages stables et leur relations avec d'autres problèmes combinatories, Les Presses de l'Université de Montréal, Montréal, Québec (1976).

    Google Scholar 

  25. G. L. Nemhauser and R. E. Trotter, Vertex packing structural properties and algorithms,Math. Programming,8 (1975), 232–248.

    Google Scholar 

  26. C. Ng, An O(n3√logn) Algorithm for the Optimal Stable Marriage Problem, Technical Report 90-22, University of California, Irvine (1990).

    Google Scholar 

  27. J. B. Orlin, A faster strongly polynomial minimum cost flow algorithm,Proc. 20th A CM Symp. on Theory of Computing (1988), pp. 377–387.

  28. B. Pittel, On likely solutions of a stable marriage problem, Manuscript.

  29. G. Pólya, R. E. Tarjan, and D. R. Woods,Notes on Introductory Combinatorics, Birkhäuser, Basel (1983).

    Google Scholar 

  30. J. S. Provan and M. O. Ball, The complexity of counting cuts and of computing the probability that a graph is connected,SIAM J. Comput.,12(4) (1983), 777–788.

    Google Scholar 

  31. D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees,J. Comput. System Sci.,26 (1983), 652–686.

    Google Scholar 

  32. A. Subramanian, A New Approach to Stable Matching Problems, Technical Report STAN-CS-89-1275, Stanford University (1989).

  33. R. E. Tarjan, Depth-first search and linear graph algorithms,SIAM J. Comput.,1 (1972), 146–160.

    Google Scholar 

  34. R. E. Tarjan,Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Harold N. Gabow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feder, T. Network flow and 2-satisfiability. Algorithmica 11, 291–319 (1994). https://doi.org/10.1007/BF01240738

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01240738

Key words

Navigation