Skip to main content
Log in

The Hamiltonian structure of general relativistic perfect fluids

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the evolution equations for a perfect fluid coupled to general relativity in a general lapse and shift, are Hamiltonian relative to a certain Poisson structure. For the fluid variables, a Lie-Poisson structure associated to the dual of a semi-direct product Lie algebra is used, while the bracket for the gravitational variables has the usual canonical symplectic structure. The evolution is governed by a Hamiltonian which is equivalent to that obtained from a canonical analysis. The relationship of our Hamiltonian structure with other approaches in the literature, such as Clebsch potentials, Lagrangian to Eulerian transformations, and its use in clarifying linearization stability, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abarbanel, H., Holm, D., Marsden, J., Ratiu, T.: [1984]: Nonlinear stability of stratified flow (to appear)

  • Arms, J.: Linearization stability of the Einstein-Maxwell system, J. Math. Phys.18, 830–833 (1977)

    Google Scholar 

  • Arms, J.: Linearization stability of gravitational and gauge fields. J. Math. Phys.20, 443–453 (1979)

    Google Scholar 

  • Arms, J.: [1979*]: Does matter break the link between symmetry and linearization instability?, GRG essay (unpublished)

  • Arms, J.: The structure of the solution set for the Yang-Mills equations. Math. Proc. Camb. Phil Soc.90, 361–372 (1981)

    Google Scholar 

  • Arms, J., Marsden, J., Moncrief, V.: Bifurcations of momentum mappings. Commun. Math. Phys.78, 455–478 (1981)

    Google Scholar 

  • Arms, J., Marsden, J., Moncrief, V.: The structure of the space of solutions of Einstein's equations, II: Several Killing fields and the Einstein Yang-Mills equations, Ann. Phys.144, 81–106 (1982)

    Google Scholar 

  • Arnold, V.: Sur la géometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluids parfaits. Ann. Inst. Fourier, Grenoble,16, 319–361 (1966a)

    Google Scholar 

  • Arnold, V.: [1966b]: Ana priori estimate in the theory of hydrodynamic stability. Am. Math. Soc. Transl.19, 267–269 (1969)

    Google Scholar 

  • Arnowitt, R., Deser, S., Misner, C. W.: The dynamics of general relativity. In Gravitation: an introduction to current research. pp. 227–65. Witten, L. (ed.) New York: Wiley 1962

    Google Scholar 

  • Bao, D.: Some aspects in the dynamics of supergravity. Thesis, U.C. Berkeley 1983

  • Bao, D.: A sufficient condition for the linearization stability ofN=1 supergravity: A preliminary report. Ann. Phys158, 211–278 (1984)

    Google Scholar 

  • Bao, D., Isenberg, J., Yasskin, P.: [1984]: The dynamics of the Einstein-Dirac system I: A principal bundle formulation of the theory and its canonical analysis. Ann. Phys. (to appear)

  • Bialynicki-Birula, I., Hubbard, J. C., Turski, L. A.: Gauge-independent canonical formulation of relativistic plasma theory (preprint)

  • Bretherton, F. P.: A note on Hamilton's principle for perfect fluids. J. Fluid Mech.44, 19–31 (1970)

    Google Scholar 

  • Calkin, M. G.: An action principle for magnetohydrodynamics, Can. J. Phys.41, 2241–2251 (1963)

    Google Scholar 

  • Carter, B.: Elastic perturbation theory in general relativity and a variational principle for a rotating solid star. Commun. Math. Phys.30, 261–286 (1973)

    Google Scholar 

  • D'Eath, P.: Three perturbation problems in general relativity, Thesis, Cambridge. Ann. Phys.98, 237–263 (1974)

    Google Scholar 

  • Demaret, J., Moncrief, V.: Hamiltonian formalism for perfect fluids in general relativity. Phys. Rev.D21, 2785–2793 (1980)

    Google Scholar 

  • Dirac, P. A. M.: Fixation of coordinates in the Hamiltonian theory of gravitation. Phys. Rev.114, 924–30 (1959)

    Google Scholar 

  • Dirac, P. A. M.: Lectures on quantum mechanics. Belfer graduate school of science, Monograph Series No. 2. New York: Yeshiva University 1964

    Google Scholar 

  • Dzyaloshinskii, I. E., Volovick, G. E.: Poisson brackets in condensed matter physics. Ann. Phys.125, 67–97 (1980)

    Google Scholar 

  • Fischer, A., Marsden, J.: General relativity as a dynamical system on the manifoldA of riemannian metrics which cover diffeomorphism, In: Methods of local and global differential geometry in general relativity. Lecture Notes in Physics, pp. 176–188 Vol.14, Berlin, Springer, Heidelberg, New York: 1972

    Google Scholar 

  • Fischer, A., Marsden, J.: Topics in the dynamics of general relativity. In: Isolated gravitating systems in general relativity, Ehlers, J. (ed.),Ital. Phys. Soc. 322–395 (1979)

  • Fischer, A., Marsden, J., Moncrief, V.: The structure of the space of solutions of Einstein's equations. I. One Killing Field. Ann. Inst. H. Poincaré.33, 147–194 (1980)

    Google Scholar 

  • Guillemin, V., Sternberg, S.: The moment map and collective motion, Ann Phys.127, 220–253 (1980)

    Google Scholar 

  • Hanson, A., Regge, T., Teitelboim, C.: Constrained Hamiltonian systems. Accad. Nazionale Lincei, Rome. No. 22, 1–35 (1976)

  • Hawking, S. W., Ellis, G. F. R.: The large scale structure of spacetime. Cambridge: Cambridge University Press 1973

    Google Scholar 

  • Hazeltine, R. D., Holm, D. D., Marsden, J. E., Morrison, P. J.: Generalized Poisson brackets and nonlinear Liapunov stability-application to reduced MHD Proc. Plasma Phys. Conf., Lausanne, June 1984

  • Holm, D. D., Kupershmidt, B. A.: Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity. Physica6D, 347–363 (1983)

    Google Scholar 

  • Holm, D. D., Kupershmidt, B. A.: Relativistic fluid dynamics as a hamiltonian system. Phys. Lett.101A, 23–26 (1984)

    Google Scholar 

  • Holm, D. D., Marsden, J. E., Ratiu, T., Weinstein, A.: Nonlinear stability conditions anda priori estimates for barotropic hydrodynamics. Phys. Lett.98A, 15–21 (1983)

    Google Scholar 

  • Holm, D., Marsden, J., Ratiu, T., Weinstein, A.: [1984]: Nonlinear stability of equilibria in fluid and plasma systems. Phys. Rep. (to appear)

  • Isenberg, J.: The construction from initial data of spacetimes with nontrivial spatial and bundle topology. Ann. Phys.129, 223–248 (1980)

    Google Scholar 

  • Joshi, N., Saraykar, R.: Linearization stability of Einstein equations coupled with self-gravitating scalar fields. J. Math. Phys.22, 343–347 (1981)

    Google Scholar 

  • Kunzle, H. P., Nester, J. M.: Hamiltonian formulation of gravitating perfect fluids and the Newtonian limit. J. Math. Phys.25, 1009–1018 (1984)

    Google Scholar 

  • Lichnerowicz, A.: Relativistic hydrodynamics and magnetohydramics: Lectures on the existence of solutions. New York: W. A. Benjamin 1967

    Google Scholar 

  • Lund, F., Canonical quantization of relativistic balls of dust. Phys. Rev.D,8, 3253 (1973)

    Google Scholar 

  • Marsden, J., Ratiu, T., Weinstein, A.: [1984a]: Semidirect products and reduction in mechanics. Trans. Am. Math. Soc.281, 147–177 (1984)

    Google Scholar 

  • Marsden, J., Ratiu, T., Weinstein, A.: [1984b]: Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Cont. Math.AMS 28 (1984)

  • Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys.5, 121–130 (1974)

    Google Scholar 

  • Marsden, J., Weinstein, A.: The Hamiltonian structure of the Maxwell-Vlasov equations. Physica4D, 394–406 (1982)

    Google Scholar 

  • Marsden, J. E., Weinstein, A.: Coadjoint orbits, vortices and Clebsch variables for incompressible fluids. Physica7D, 305–323 (1983)

    Google Scholar 

  • Marsden, J. E., Weinsten, A., Ratiu, T., Schmid, R., Spencer, R. G.: Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proc,. IUTAM-ISIMM Symposium on: Modern developments in analytical mechanics. Torino, June 7–11, 1982. Atti Accad. Sci. Torino117, 289–340 (1983)

    Google Scholar 

  • Misner, C. W., Thorne, K., Wheeler, J. A.: Gravitation, San Francisco: W. H. Freeman 1973

    Google Scholar 

  • Moncrief, V.: Gravitational perturbations of spherically symmetric systems, II. Perfect fluid interiors. Ann. Phys.88, 343–370 (1974)

    Google Scholar 

  • Moncrief, V.: Hamiltonian formalism for relativistic perfect fluids. Phys. Rev.D. 16, 1702–1705 (1977)

    Google Scholar 

  • Morrison, P. J., Greene, J. M.: Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett.45, 790–794 (1980)

    Google Scholar 

  • Ratiu, T.: Euler-Poisson equations on Lie algebras. Thesis, U.C. Berkeley 1980

  • Schutz, B. F.: Perfect fluids in general relativity-velocity potentials and a variational principle. Phys. Rev.D2, 2762–2773 (1970)

    Google Scholar 

  • Schutz, B. F.: The Hamiltonian theory of a relativistic perfect fluid. Phys. Rev.D4, 3559–3566 (1971)

    Google Scholar 

  • Schutz, B. F., Sorkin, R.: Variational aspects of relativistic field theories, with application to perfect fluids. Ann. Phys.107, 1–43 (1977)

    Google Scholar 

  • Seliger, R. L., Whitham, G. B.: Variational principles in continuum mechanics. Proc. Roy. Soc.305, 1–25 (1968)

    Google Scholar 

  • Smarr, L., Taubes, C., Wilson, J. [1980]: General relativistic hydrodynamics. In: The comoving, Eulerian and velocity potential formalisms. Essays on General Relativity, pp. 157–183, Tipler, F. (ed.) New York: Academic Press

    Google Scholar 

  • Spencer, R. G.: The Hamiltonian structure of multi-species fluid electrodynamics. In: Mathematical methods in hydrodynamics and integrability in related dynamical systems. Tabor, M., Treve, Y. M., (eds.), AIP Conf. Proc., La Jolla Institute 1981,88, 121–126 (1982)

  • Tam, K. K.: A variational principle in relativistic magnetohydrodynamics. Can. J. Phys.44, 2403–2409 (1966)

    Google Scholar 

  • Tam, K. K., O'Hanlon, J.: Relativistic magnetohydrodynamics of a gravitating fluid. Il Nuovo Cimento62B, 351–359 (1969)

    Google Scholar 

  • Taub, A. H.: Relativistic Rankine-Hugoniot equations. Phys. Rev.74, 328–334 (1948)

    Google Scholar 

  • Taub, A. H.: General relativistic variational principle for perfect fluids. Phys. Rev.94, 1468–1470 (1954)

    Google Scholar 

  • Taub, A. H.: Stability of general relativistic gaseous masses and variational principles. Commun. Math. Phys.15, 235–254 (1969)

    Google Scholar 

  • Taub, A. H.: Variational principles and relativistic magnetohydrodynamics. Colloq. CNRS,184, 189–200 (1970)

    Google Scholar 

  • Taub, A. H.: Variational principles in general relativity, Bressanone lectures, pp. 206–300. Rome: Centro Internazionale Matematico Estivo 1970

    Google Scholar 

  • van Dantzig, D. On the phenomenological thermodynamics of moving matter. Physica6, 673–704 (1939)

    Google Scholar 

  • Walton, R.: Hamiltonian dynamics of a self-gravitating isentropic perfect fluid, Thesis, Stanford University 1979

  • Walton, R.: [1980]: A new Hamiltonian formalism for general relativistic perfect fluids (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Research supported in part by NSF grant MCS 81-08814(A02)

Research supported in part by NSF grant MCS 81-07086

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, D., Marsden, J. & Walton, R. The Hamiltonian structure of general relativistic perfect fluids. Commun.Math. Phys. 99, 319–345 (1985). https://doi.org/10.1007/BF01240351

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01240351

Keywords

Navigation