Skip to main content
Log in

Pathogens and sex in plants

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Extant theories that attribute the evolution of sex to pathogen attack depend on the assumption that pathogens are narrowly specialized, so that high fitness on one host genotype results in poor fitness on hosts with other allele combinations. This assumption is necessary in order for frequency-dependent selection to produce sustained cycling of gametic disequilibrium across the host's disease resistance loci, which makes recombination advantageous. However, a review of numerous genetic studies on plant disease resistance failed to uncover a single example consistent with this assumption. Instead, the empirical results provide strong support for a different pattern of pathogen specificity, in which adaptation by pathogens to one resistance allele does not preclude high fitness on alternate host genotypes lacking that allele. Modification of traditional models for pathogen-mediated evolution of sex showed that for conditions close to the empirical pattern of genotypic specificity, sex is almost never favoured. For plants, these results cast doubt on current theories arguing that pathogens are the primary selective agent responsible for sexual reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anikster, Y. (1984) Parasitic specialization ofPuccinia hordei in Israel.Phytopathology 74, 1061–4.

    Google Scholar 

  • Athow, K.L., Laviolette, F.A., Mueller, E.H. and Wilcox, J.R. (1980) A new major gene for resistance toPhytophthora megasperma var.sojae in soybean.Phytopathology 70, 977–80.

    Google Scholar 

  • Bagga, H.S. and Boone, D.M. (1968) Genes inVenturia inaequalis controlling pathogenicity to crabapples.Phytopathology 58, 1176–82.

    Google Scholar 

  • Barrett, J.A. (1981) The evolutionary consequences of monoculture. InGenetic consequences of man-made change (J.A. Bishop and L.M. Cook, eds) pp. 209–48. Academic Press, London.

    Google Scholar 

  • Barrett, J.A. (1985) The gene-for-gene hypothesis: parable or paradigm. InEcology and genetics of host—parasite interactions (D. Rollinson and R.M. Anderson, eds) pp. 215–25. Academic Press, Orlando, FL.

    Google Scholar 

  • Bartos, P., Fleischmann, G., Samborski, D.J. and Shipton, W.A. (1969) Studies on asexual variation in the virulence of oat crown rust,Puccinia coronata f. sp.avenae, and wheat leaf rust,Puccinia recondita.Can. J. Bot. 47, 1383–7.

    Google Scholar 

  • Bell, G. (1982)The Masterpiece of Nature. University of California Press, Berkeley.

    Google Scholar 

  • Bell, G. and Maynard Smith, J. (1987) Short-term selection for recombination among mutually antagonistic species.Nature 328, 66–8.

    Google Scholar 

  • Bronson, C.R. and Ellingboe, A.H. (1986) The influence of four unnecessary genes for virulence on the fitness ofErysiphe graminis f. sp.tritici.Phytopathology 76, 154–8.

    Google Scholar 

  • Browder, L.E. and Eversmeyer, M.G. (1980) Sorting ofPuccinia recondita:Triticum infection-type data sets toward the gene-for-gene model.Phytopathology 70, 666–70.

    Google Scholar 

  • Brown, J.K.M. and Wolfe, M.S. (1990) Structure and evolution of a population ofErysiphe graminis f. sp.hordei.Plant Pathol. 39, 376–90.

    Google Scholar 

  • Buczacki, S.T. and Humphrey, J.G. (1973) Problems associated with physiological specialization inPlasmodiophora brassicae, with a description of two new races infectingBrassica napus.Trans. Br. Mycol. Soc. 60, 588–90.

    Google Scholar 

  • Burdon, J.J. (1987) Phenotypic and genetic patterns of resistance to the pathogenPhakopsora pachyrhizi in populations ofGlycine canescens.Oecologia 73, 257–67.

    Google Scholar 

  • Burdon, J.J. (1988) Major gene resistance toPhakopsora pachyrhizi inGlycine canescens, a wild relative of soybean.Theor. Appl. Genet. 75, 923–8.

    Google Scholar 

  • Burdon, J.J. and Jarosz, A.M. (1991) Host—pathogen interactions in natural populations ofLinum marginale andMelampsora lini: I. Patterns of resistance and racial variation in a large host population.Evolution 45, 205–17.

    Google Scholar 

  • Caten, C.E. (1974) Intra-racial variation inPhytophthora infestans and adaptation to field resistance for potato blight.Ann. Appl. Biol. 77, 259–70.

    Google Scholar 

  • Chen, X. and Line, R.F. (1992) Identification of stripe rust resistance genes in wheat genotypes used to differentiate North American races ofPuccinia striiformis.Phytopathology 82, 1428–34.

    Google Scholar 

  • Christ, B.J. and Groth, J.V. (1982) Inheritance of resistance in three cultivars of beans to the bean rust pathogen and interactions of virulence and resistance genes.Phytopathology 72, 771–3.

    Google Scholar 

  • Christ, B.J. and Person, C.O. (1987) Effects of selection by host cultivars on populations ofUstilago hordei.Can. J. Bot. 65, 1379–83.

    Google Scholar 

  • Converse, R.H. (1967) Physiological races ofPhytophthora fragariae on strawberry in California, Oregon, and Washington.Phytopathology 57, 173–7.

    Google Scholar 

  • Crute, I.R. (1987) The geographical distribution and frequency of virulence determinants inBremia lactucae: relationships between genetic control and host selection. InPopulations of plant pathogens: their dynamics and genetics (M.S. Wolfe and C.E. Caten, eds) pp. 193–212. Blackwell, Oxford.

    Google Scholar 

  • Darby, P., Lewis, B.G. and Matthews, P. (1986) Diversity of virulence withinAscochyta pisi and resistance in the genusPisum.Plant Pathol. 35, 214–23.

    Google Scholar 

  • Day, P.R. (1974)Genetics of Host—Parasite Interaction. W.H. Freeman, San Francisco.

    Google Scholar 

  • Denward, T. (1967) Differentiation inPhytophthora infestans. I. A comparative study of eight different biotypes.Hereditas 58, 191–220.

    Google Scholar 

  • Drijfhout, E. and Davis, J.H.C. (1989) Selection of a new set of homogeneously reacting bean (Phaseolus vulgaris) differentials to differentiate races ofColletotrichum lindemuthianum.Plant Pathol. 38, 391–6.

    Google Scholar 

  • Felsenstein, J. (1988) Sex and the evolution of recombination. InThe evolution of sex (R.E. Michod and B.R. Levin, eds) pp. 74–86. Sinauer, Sunderland, MA.

    Google Scholar 

  • Flangas, A.L. and Dickson, J.G. (1961) Complementary genetic control of differential compatibility in rusts.Q. Rev. Biol. 36, 254–72.

    Google Scholar 

  • Flor, H.H. (1947) Inheritance of reaction to rust in flax.J. Agricult. Res. 74, 241–62.

    Google Scholar 

  • Flor, H. H. (1955) Host—parasite interaction in flax-rust — its genetics and other implications.Phytopathology 45, 680–5.

    Google Scholar 

  • Flor, H.H. (1956) The complementary genetic systems in flax and flax rust.Adv. Genet. 8, 29–54.

    Google Scholar 

  • Frank, S.A. (1991a) Ecological and genetic models of host—pathogen coevolution.Heredity 67, 73–83.

    Google Scholar 

  • Frank, S.A. (1991b) Spatial variation in coevolutionary dynamics.Evol. Ecol. 5, 193–217.

    Google Scholar 

  • Frank, S.A. (1993) Coevolutionary genetics of plants and pathogens.Evol. Ecol. 7, 45–75.

    Google Scholar 

  • Gabriel, D.W., Burges, A. and Lazo, G.R. (1986) Gene-for-gene interactions of five cloned avirulence genes fromXanthomonas campestris pv.malvacearum with specific resistance genes in cotton.Proc. Natl Acad. Sci. USA 83, 6415–19.

    Google Scholar 

  • Gale, J.S. (1987) Factors delaying the spread of a virulent mutant of a fungal pathogen: some suggestions from population genetics. InPopulations of plant pathogens: their dynamics and genetics (M.S. Wolfe and C.E. Caten, eds) pp. 55–62. Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  • Galvez, G.E. and Lozano, J.C. (1968) Identification of races ofPiricularia oryzae in Colombia.Phytopathology 58, 294–6.

    Google Scholar 

  • Grant, M.W. and Archer, S.A. (1983) Calculation of selection coefficients against unnecessary genes for virulence from field data.Phytopathology 73, 547–51.

    Google Scholar 

  • Gulya, T.J., Sackston, W.E., Viranyi, F., Masirevic, S. and Rashid, K.Y. (1991) New races of the sunflower downy mildew pathogen (Plasmopara halstedii) in Europe and North and South America.J. Phytopathol. 132, 303–11.

    Google Scholar 

  • Hamilton, W.D. (1980) Sex versus non-sex versus parasite.Oikos 35, 282–90.

    Google Scholar 

  • Hamilton, W.D. (1982) Pathogens as causes of genetic diversity in their host populations. InPopulation biology of infectious diseases (R.M. Anderson and R.M. May, eds) pp. 269–96. Springer-Verlag, Berlin.

    Google Scholar 

  • Hamilton, W.D., Axelrod, R. and Tanese, R. (1990) Sexual reproduction as an adaptation to resist parasites (a review).Proc. Natl Acad. Sci. USA,87, 3566–73.

    Google Scholar 

  • Harry, I.B. and Clarke, D.D. (1986) Race-specific resistance in groundsel (Senecio vulgaris) to the powdery mildewErysiphe fischeri.New Phytol. 103, 167–75.

    Google Scholar 

  • Harry, I.B. and Clarke, D.D. (1987) The genetics of race-specific resistance in groundsel (Senecio vulgaris) to the powdery mildew fungusErysiphe fischeri.New Phytol. 107, 715–23.

    Google Scholar 

  • Harter, L.L. and Zaumeyer, W.J. (1941) Differentiation of physiological races ofUromyces phaseoli typica on bean.J. Agricult. Res. 62, 717–31.

    Google Scholar 

  • Hoffmann, J.A. and Metzger, R.J. (1976) Current status of virulence genes and pathogenic races of the wheat bunt fungi in the northwestern USA.Phytopathology 66, 657–60.

    Google Scholar 

  • Holton, C.S. (1967) Distribution and prevalence of virulence for Victoria oats inUstilago avenae.Plant Dis. Rep. 51, 846–9.

    Google Scholar 

  • Hsu, S.-C. and Ellingboe, A.H. (1972) Elongation of secondary hyphae and transfer of35S from barley toErysiphe graminis f. sp.hordei during primary infection.Phytopathology 62, 876–82.

    Google Scholar 

  • Hutson, V. and Law, R. (1981) Evolution of recombination in populations experiencing frequency-dependent selection with time delay.Proc. R. Soc. Lond. B 213, 345–59.

    Google Scholar 

  • Jaenike, J. (1978) An hypothesis to account for the maintenance of sex within populations.Evol. Theory 3, 191–4.

    Google Scholar 

  • Jayakar, S.D. (1970) A mathematical model for interaction of gene frequencies in a parasite and its host.Theor. Pop. Biol. 1, 140–64.

    Google Scholar 

  • Johnson, R. (1987) Selected examples of relationships between pathogenicity in cereal rusts and resistance in their hosts. Inpopulations of plant pathogens: their dynamics and genetics (M.S. Wolfe and C.E. Caten, eds) pp. 181–92. Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  • Jones, F.G. and Parrott, D.M. (1965) The genetic relationships of pathotypes ofHeterodera rostochiensis which reproduce on hybrid potatoes with genes for resistance.Ann. Appl. Biol. 56, 27–36.

    Google Scholar 

  • Klittich, C.J.R. and Bronson, C.R. (1986) Reduced fitness associated with TOX1 ofCochliobolus heterostrophus.Phytopathology 76, 1294–8.

    Google Scholar 

  • Lenne, J.M. and Burdon, J.J. (1990) Preliminary study of virulence and isozymic variation in natural populations ofColletotrichum gloeosporioides fromStylosanthes guianensis.Phytopathology 80, 728–31.

    Google Scholar 

  • Leonard, K.J. (1977) Selection pressures and plant pathogens.Ann. NY Acad. Sci. 287, 207–22.

    Google Scholar 

  • Lewis, W.M. (1987) The cost of sex. InThe evolution of sex and its consequences (S.C. Stearns, ed.) pp. 35–57. Birkhauser Verlag, Basel.

    Google Scholar 

  • Lively, C.M. (1992) Parthenogenesis in a freshwater snail: reproductive assurance versus parasitic release.Evolution 46, 907–13.

    Google Scholar 

  • Lively, C.M., Craddock, C. and Vrijenhoek, R.C. (1990) Red queen hypothesis supported by parasitism in sexual and clonal fish.Nature 344, 864–6.

    Google Scholar 

  • Luz, W.C. da and Hosford, R.M. (1980) TwelvePyrenophora trichostoma races for virulence to wheat in the central plains of North America.Phytopathology 70, 1193–6.

    Google Scholar 

  • McKenzie, R.I.H. and Green, G.J. (1962) Further studies on the genes in oats for resistance to stem rust.Can. J. Genet. Cytol. 4, 394–401.

    Google Scholar 

  • McVey, D.V. (1990) Reaction of 578 spring spelt wheat accessions to 35 races of wheat stem rust.Crop Sci. 30, 1001–5.

    Google Scholar 

  • McVey, D.V. (1991) Reaction of a group of related wheat species (AABB genome and AABBDD) to stem rust.Crop Sci. 31, 1145–9.

    Google Scholar 

  • Martens, J.W., McKenzie, R.I.H. and Green, G.J. (1970) Gene-for-gene relationships in theAvena: Puccinia graminis host—parasite system in Canada.Can. J. Bot. 48, 969–75.

    Google Scholar 

  • Martin, T.J. and Ellingboe, A.H. (1976) Differences between compatible parasite/host genotypes involving the Pm4 locus of wheat and the corresponding genes inErysiphe graminis f. sp.tritici.Phytopathology 66, 1435–8.

    Google Scholar 

  • May, R.M. and Anderson, R.M. (1983) Epidemiology and genetics in the coevolution of parasites and hosts.Proc. Soc. Lond. B 219, 281–313.

    Google Scholar 

  • Maynard Smith, J. (1978)The Evolution of Sex. Cambridge University Press, Cambridge.

    Google Scholar 

  • Menzies, J.G. and MacNeill, B.H. (1987) Effect of ‘unnecessary’ genes for virulence on six components of fitness inErysiphe graminis f. sp.tritici.Can. J. Plant Pathol. 9, 214–17.

    Google Scholar 

  • Miller, J.F. and Gulya, T.J. (1987) Inheritance of resistance to race 3 downy mildew in sunflower.Crop Sci. 27, 210–12.

    Google Scholar 

  • Moritz, C., McCallum, H., Donnellan, S. and Roberts, J.D. (1991) Parasite loads in parthenogenetic and sexual lizards (Heteronotia binoei): support for the Red Queen hypothesis.Proc. R. Soc. Lond. B 244, 145–9.

    Google Scholar 

  • Noronha-Wagner, M. and Bettencourt, A.J. (1967) Genetic study of the resistance ofCoffea spp. to leaf rust. I. Identification and behavior of four factors conditioning disease reaction inCoffea arabica to twelve physiological races ofHemileia vastatrix.Can. J. Bot. 45, 2021–31.

    Google Scholar 

  • Oort, A.J.P. (1963) A gene-for-gene relationship in theTriticum—Ustilago system, and some remarks on host—pathogen combinations in general.Neth. J. Plant Pathol. 69, 104–9.

    Google Scholar 

  • Ostergard, H. (1987) Estimating relative fitness in asexually reproducing plant pathogen populations.Theor. Appl. Genet. 74, 87–94.

    Google Scholar 

  • Parker, M.A. (1988a) Polymorphism for disease resistance in the annual legumeAmphicarpaea bracteata.Heredity 60, 27–31.

    Google Scholar 

  • Parker, M.A. (1988b) Genetic uniformity and disease resistance in a clonal plant.Am. Nat. 132, 538–49.

    Google Scholar 

  • Parker, M.A. (1990) The pleiotropy theory for polymorphism of disease resistance genes in plants.Evolution 44, 1872–5.

    Google Scholar 

  • Parker, M.A. (1991) Nonadaptive evolution of disease resistance in an annual legume.Evolution 45, 1209–17.

    Google Scholar 

  • Parker, M.A. (1992) Disease and plant population genetic structure. InPlant resistance to herbivores and pathogens: ecology, evolution, and genetics (R.S. Fritz and E.L. Simms, eds) pp. 345–62. University of Chicago Press, Chicago Press.

  • Parker, M.A. (1993) Constraints on the evolution of disease resistance in an annual legume.Heredity 71, 290–4.

    Google Scholar 

  • Pelham, J. (1972) Strain—genotype interaction of tobacco mosaic virus in tomato.Ann. Appl. Biol. 71, 219–28.

    Google Scholar 

  • Powers, H.R. and Sando, W.J. (1960) Genetic control of the host—parasite relationship in wheat powdery mildew.Phytopathology 50, 454–7.

    Google Scholar 

  • Prakash, C.S. and Thielges, B.A. (1989) Interaction of geographic isolates ofMelampsora medusae andPopulus: effect of temperature.Can. J. Bot. 68, 486–90.

    Google Scholar 

  • Reinhold, M. and Sharp, E.L. (1982) Virulence types ofPuccinia hordei from North America, North Africa, and the Middle East.Plant Dis. 66, 1009–11.

    Google Scholar 

  • Risser, G., Banihashemi, Z. and Davis, D.W. (1976) A proposed nomenclature ofFusarium oxysporum f. sp.melonis races and resistance genes inCucumis melo.Phytopathology 66, 1105–6.

    Google Scholar 

  • Ross, J.P. (1968) Additional physiological races ofCercospora sojina on soybeans in North Carolina.Phytopathology 58, 708–9.

    Google Scholar 

  • Sackston, W.E. (1962) Studies on sunflower rust. III. Occurrence, distribution, and significance of races ofPuccinia helianthi.Can. J. Bot. 40, 1449–58.

    Google Scholar 

  • Sarkar, S. (1992) Sex, disease, and evolution — variations on a theme from J.B.S. Haldane.Bioscience 42, 448–54.

    Google Scholar 

  • Seger, J. (1988) Dynamics of some simple host—parasite models with more than two genotypes in each species.Phil. Trans. R. Soc. Lond. B 319, 541–55.

    Google Scholar 

  • Seger, J. and Hamilton, W.D. (1988) Parasites and sex. InThe evolution of sex (R.E. Michod and B.R. Levin, eds) pp. 176–93. Sinauer, Sunderland, MA.

    Google Scholar 

  • Sidhu, G. and Person, C. (1972) Genetic control of virulence inUstilago hordei. III. Identification of genes for host resistance and demonstration of gene-for-gene relationship.Can. J. Genet. Cytol. 14, 209–13.

    Google Scholar 

  • Simms, E.L. (1992) Costs of plant resistance to herbivory. InPlant resistance to herbivores and pathogens: ecology, evolution, and genetics (R.S. Fritz and E.L. Simms, eds) pp. 392–425. University of Chicago Press.

  • Slesinski, R.S. and Ellingboe, A.H. (1970) Gene-for-gene interactions during primary infection of wheat byErysiphe graminis f. sp.tritici.Phytopathology 60, 1068–70.

    Google Scholar 

  • Staskawicz, B.J., Dahlbeck, D. and Keen, N.T. (1984) Cloned avirulence gene ofPseudomonas syringae pv.glycinea determines race-specific incompatibility onGlycine max.Proc. Natl Acad. Sci. USA 81, 6024–8.

    Google Scholar 

  • Stebbins, N.B., Patterson, F.L. and Gallun, R.L. (1980) Interrelationships among wheat genes for resistance to Hessian fly.Crop Sci. 20, 177–80.

    Google Scholar 

  • Stebbins, N.B., Patterson, F.L. and Gallun, R.L. (1982) Interrelationships among wheat genes H3, H6, H9, and H10 for Hessian fly resistance.Crop Sci. 22, 1029–32.

    Google Scholar 

  • Tapke, V.F. (1945) New physiological races ofUstilago hordei.Phytopathology 35, 970–6.

    Google Scholar 

  • Taylor, J.D., Bevan, J.R., Crute, I.R. and Reader, S.L. (1989) Genetic relationship between races ofPseudomonas syringae pv.pisi and cultivars ofPisum sativum.Plant Pathol. 38, 364–75.

    Google Scholar 

  • Thompson, J.N. and Burdon, J.J. (1992) Gene-for-gene coevolution between plants and parasites.Nature 360, 121–5.

    Google Scholar 

  • Tooby, J. (1982) Pathogens, polymorphism, and the evolution of sex.J. Theor. Biol. 97, 557–76.

    Google Scholar 

  • Webster, R.K., Saghai-Maroof, M.A. and Allard, R.W. (1986) Evolutionary response of barley composite cross II toRhynchosporium secalis analyzed by pathogenic complexity and by gene-by-race relationships.Phytopathology 76, 661–8.

    Google Scholar 

  • Wolfe, M.S. and Barrett, J.A. (1977) Population genetics of powdery mildew epidemics.Ann. NY Acad. Sci. 287, 151–63.

    Google Scholar 

  • Yahyaoui, A.H. and Sharp, E.L. (1987) Virulence spectrum ofPuccinia hordei in North Africa and the Middle East.Plant Dis. 71, 597–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, M.A. Pathogens and sex in plants. Evol Ecol 8, 560–584 (1994). https://doi.org/10.1007/BF01238258

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01238258

Keywords

Navigation