Skip to main content
Log in

Convergence of filiform pollen morphologies in seagrasses: Functional mechanisms

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

The peculiar filiform pollen morphology and ability to pollinate in an aquatic medium have evolved convergently in the marine angiosperms or ‘seagrasses’. A comparison of these systems with freshwater ones, reveals that reproductive strategy alone does not provide sufficient information to understand this convergence. Several models have, however, been proposed to explain the function and evolution of seagrass pollen morphologies. The first is a mathematical model, random search theory, which requires pollen to travel both ‘randomly’ and perpendicularly to its path. It is elegant conceptually, but does not hold up to physical and empirical scrutiny. Conversely, a biophysical model, which requires pollen to obey the fluid dynamic principles of boundary-layer flow, may be complicated conceptually, but it is consistent with mathematics and nature. The correct modelling of pollination mechanisms in seagrasses provides an understanding of contemporary adaptations as well as the processes that selected them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, J.D. (1986) Mechanistic implication for pollination in the marine angiosperm,Zostera marina L.Aquat. Bot. 24, 343–53.

    Google Scholar 

  • Ackerman, J.D. (1989) Biomechanical aspects of submarine pollination inZostera marina L. PhD thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Ackerman, J.D. (1993) Pollen germination and pollen tube growth in the marine angiosperm,Zostera marina L.Aquat. Bot. 46, 189–202.

    Google Scholar 

  • Ackerman, J.D. and Okubo, A. (1993) Reduced mixing in a marine macrophyte canopy.Funct. Ecol. 7, 305–9.

    Google Scholar 

  • Arber, A. (1920)Water Plants, A Study of Aquatic Angiosperms. Cambridge University Press, Cambridge. Reprinted 1972 by Verlag von J. Cramer, Lehre.

    Google Scholar 

  • Baker, H.G. (1983) An outline of the history of anthecology, or pollination biology. InPollination biology (L. Real, ed.), pp. 7–28. Academic Press, Orlando, USA.

    Google Scholar 

  • Balfour, B. (1879) On the genusHalophila.Trans. Bot. Soc. Edin. 13, 290–343.

    Google Scholar 

  • Black, J.M. (1913) The flowering and fruiting ofPectinella antarctica (Cymodocea antarctica).Trans. Roy. Soc. S. Aus. 37, 1–5.

    Google Scholar 

  • Bornet, D.M. (1864) Recherches sur lePhucagrostis major Cavol.Ann. Sci. Nat. Bot (Sr 5)1, 5–51.

    Google Scholar 

  • Bowman, H.H.M. (1922) The distribution and pollination of certain sea-grasses.Mich. Acad. Sci. Papers 22, 3–10.

    Google Scholar 

  • Cook, C.D.K. (1982) Pollination mechanisms in the Hydrocharitaceae. InStudies on aquatic vascular plants (J.J. Symoens, S.S. Hooper and P. Compère, eds), pp. 1–15. Royal Botanical Society of Belgium, Brussels, Belgium.

    Google Scholar 

  • Cook, C. D. K. (1988) Wind pollination in aquatic angiosperms.Ann. Missouri Bot. Garden 75, 768–77.

    Google Scholar 

  • Cook, C.D.K., Gut, B.J., Rix, E.M., Schneller, J. and Seitz, M. (1974)Water Plants of the World: A Manual for the Identification of the Genera of Freshwater Macrophytes. Dr W. Junk, The Hague.

    Google Scholar 

  • Cox, P.A. (1983) Search theory, random motion and the convergent evolution of pollen and spore morphology in aquatic plants.Am. Nat. 121, 9–31.

    Google Scholar 

  • Cox, P.A. (1988) Hydrophilous pollination.Ann. Rev. Ecol. Syst. 19, 261–80.

    Google Scholar 

  • Cox, P.A. and Knox, R.B. (1988a) Pollination postulates and two-dimensional pollination in hydrophilous plants: convergent evolution in the generaHalodule (Cymodoceacea),Halophila (Hydrocharitaceae),Ruppia (Ruppiaceae), andLepilaena (Zannichelliaceae).Amer. J. Bot. 76, 164–75.

    Google Scholar 

  • Cox, P.A. and Knox, R.B. (1988b) Pollination postulates and two-dimensional pollination in hydrophilous monocotyledons.Ann. Missouri Bot. Garden 75, 811–18.

    Google Scholar 

  • Cox, P.A. and Tomlinson, P.B. (1988) Pollination ecology of a seagrass,Thalassia testudinum (Hydrocharitaceae), in St. Croix.Am. J. Bot. 75, 958–65.

    Google Scholar 

  • Cox, P.A., Laushman, R.H. and Ruckelshaus, M.H. (1992) Surface and submarine pollination in the seagrassZostera marina L.Bot. J. Linn. Soc. 109, 281–91.

    Google Scholar 

  • De Lanessan, M.J.-L. (1875) Organoge'nie de la fleur et du fruit desZostera marina L. etZ. nana Roth. Rapports des Zostera avec les Gramines.Assoc. Fr. Avanc. Sci. Nantes. Compt. Rend. 690–707.

  • Delpino, F. and Ascherson, P. (1871) Federico Delpino's Eintheilung der Pflanzen nach dem Mechanismus der dichogamischen Befruchtung und Bemerkungen Über die Befruchtungs-Vorgänge bei Wasserpflanzen (Aus dessen,, Ulteriori osservazioni sulla dicogamia nel regno vegetabile Part II. Fasc. I. [Atti della soc. ital. di sc. nat. XIII, 1870] migetheilt und mit einigen Zusätzen versehen von P. Ascherson.Bot. Zeit. 29, 443–5, 447–59, 463–7.

    Google Scholar 

  • Den Hartog, C. (1970)The Seagrasses of the World. North Holland, Amsterdam, The Netherlands.

    Google Scholar 

  • Ducker, S.C. and Knox, R.B. (1976) Submarine pollination in seagrasses.Nature 263, 705–6.

    Google Scholar 

  • Ducker, S.C., Pettitt, J.M. and Knox, R.B. (1978) Biology of Australian seagrasses: pollen development and submarine pollination inAmphibolis antarctica andThalassodendron ciliatum (Cymodoceaceae).Aus. J. Bot. 26, 265–85.

    Google Scholar 

  • Dudley, W.R. (1893) The genusPhyllospadix. InThe Wilder quarter-century book, pp. 403–20. Comstock Press, Ithaca, USA.

    Google Scholar 

  • Eckman, J.E. (1987) The role of hydrodynamics in recruitment, growth and survival ofArgopecten irradians (L.) andAnomia simplex (D'Orbigny) within eelgrass meadows.J. Exp. Mar. Biol. Ecol. 106, 165–91.

    Google Scholar 

  • Einstein, A. (1906) A new determination of molecular dimensions.Ann. der Phys. 19, 289–306.

    Google Scholar 

  • Einstein, A. (1911) Corrections.Ann. der Phys. 34, 591–2.

    Google Scholar 

  • Esau, K. (1977)Anatomy of Seed Plants (2nd edn). J. Wiley and Sons, New York, USA.

    Google Scholar 

  • Faegri, K. and van der Pijl, L. (1979)The Principles of Pollination Ecology (3rd revised edn). Pergamon Press, New York, USA.

    Google Scholar 

  • Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J. and Brooks, N.H. (1979)Mixing in Inland and Coastal Waters. Academic Press, New York, USA.

    Google Scholar 

  • Fonseca, M.S. and Fisher, J.S. (1986) A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration.Mar. Ecol. Prog. Ser. 29, 15–22.

    Google Scholar 

  • Fonseca, M.S. and Kenworthy, W.J. (1987) Effects of current on photosynthesis and distribution of seagrasses.Aquat. Bot. 27, 59–78.

    Google Scholar 

  • Fonseca, M.S., Fisher, J.S., Zieman, J.C. and Thayer, G.W. (1982) Influence of seagrass,Zostera marina L., on current flow.Estuarine Coastal Shelf Sci. 15, 351–4.

    Google Scholar 

  • Fonseca, M.S., Zieman, J.C., Thayer, G.W. and Fisher, J.S. (1983) The role of current velocity in structuring eelgrass (Zostera marina L.) meadows.Estuarine Coastal Shelf Sci. 17, 367–80.

    Google Scholar 

  • Forgacs, O.L. and Mason, S.G. (1958) The flexibility of wood-pulp fibers.TAPPI 41, 695–704.

    Google Scholar 

  • Gambi, M.C., Nowell, A.R.M. and Jumars, P.A. (1990) Flume observations on flow dynamics inZostera marina L. (Eelgrass) Beds.Mar. Ecol. Prog. Ser. 61, 159–69.

    Google Scholar 

  • Goldsmith, H.L. and Mason, S.G. (1967) The microrheology of dispersions. InRheology theory and application. Vol. 4 (F. R. Eirich, ed.), pp. 85–250. Academic Press, New York, USA.

    Google Scholar 

  • Gottsberger, G. (1985) Floral ecology report on the years 1981(79) to 1985.Prog. Bot. 47, 384–417.

    Google Scholar 

  • Guo. Y.-H., Sperry, R., Cook, C.D.K. and Cox, P.A. (1990). The pollination ecology ofZannichellia palustris L. (Zannichelliaceae).Aquat. Bot. 38, 341–56.

    Google Scholar 

  • Haynes, R.R. (1988) Reproductive biology of selected aquatic plants.Ann. Missouri Bot. Garden 75, 805–10.

    Google Scholar 

  • Hersh, R. and Griego, R.J. (1969) Brownian motion and potential theory.Sci. Am. 220, 66–74.

    Google Scholar 

  • Hooker, J.D. (1847)The Botany of the Atlantic Voyage of H. M. Discovery Ships Erebus and Terror, Part II. Botany of Fuegia. The Fauklands, Kerguelensland etc. Rieves Bros., London, UK.

    Google Scholar 

  • Jeffery, G.B. (1922) The motion of ellipsoidal particles immersed in a viscous fluid.Proc. Roy. Soc. Ser. A. 102, 161–79.

    Google Scholar 

  • Kausik, S.B. (1941) Structure and development of the staminate flower and the male gametophyte ofEnalus acoroides (L. fil.) Steud.Proc. Ind. Acad. Sci. Ser B 14, 1–16.

    Google Scholar 

  • Kausik, S.B. and Rao, P.K.V. (1942) The male gametophyte ofHalophila ovata Gaudich.Half-yrly J. Mys. Univ. 3, 41–9.

    Google Scholar 

  • Knuth, P. (1906)Handbook of Flower Pollination, Based Upon Hermann Müller's Work ‘Fertilisation of Flowers by Insects’. Volume I: Introduction and Literature (translated by J.R. Ainsworth Davis). Oxford University Press, London, UK.

    Google Scholar 

  • Koopman, B.O. (1953) The optimum distribution of effort.Oper Res. 1, 52–63.

    Google Scholar 

  • Koopman, B.O. (1956a) The theory of search: I. Kinematic bases.Oper. Res. 4. 324–46.

    Google Scholar 

  • Koopman, B.O. (1956b) The theory of search: II. Target detection.Oper. Res. 4, 503–31.

    Google Scholar 

  • Koopman, B.O. (1957) The theory of search: III. The optimum distribution of searching effort.Oper. Res. 5, 613–26.

    Google Scholar 

  • Les, D.H. (1988) Breeding systems, population structure, and evolution in hydrophilous angiosperms.Ann. Missouri Bot. Garden 75, 819–35.

    Google Scholar 

  • McConchie, C.A. (1982) The diversity of hydrophilous pollination in monocotyledons, inPollination '82. (E.G. Williams, R.B. Knox, J.H. Gilbert and P. Bernhardt, eds). pp. 148–65. University of Melbourne, Melbourne, Australia.

    Google Scholar 

  • Mitchell, J.G., Okubo, A., and Furman, J.A. (1985) Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem.Nature 316, 58–9.

    Google Scholar 

  • Nixon, S.W. (1988) Physical energy inputs and the comparative ecology of lake and marine ecosystems.Limnol. Oceanogr. 33, 1005–25.

    Google Scholar 

  • Okubo, A. (1980)Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Orpurt, P.A. and Boral, L.L. (1964) The flowers, fruits, and seeds ofThalassia testudinum Koenig.Bull. Mar. Sci. 14, 296–302.

    Google Scholar 

  • Pascasio, J.F. and Santos, J.K. (1930) A critical morphological study ofThalassia hemprichii (Ehrenb.) Aschers. from the Philippines.Nat. Appl. Sci. Bull. Univ. Philipp. 1, 1–19.

    Google Scholar 

  • Pettitt, J.M. (1976) Pollen wall and stigma surface in the marine angiospermsThalassia andThalassodendron.Micron 7, 21–32.

    Google Scholar 

  • Pettitt, J.M. (1981) Reproduction in seagrasses: pollen development inThalassia hemprichii, Halophila stipulacea, andThalassodendron ciliatum.Ann. Bot. 48, 609–22.

    Google Scholar 

  • Pettitt, J.M. (1984) Aspects of flowering and pollination in marine angiosperms.Oceanogr. Mar. Biol. Ann. Rev. 22, 315–42.

    Google Scholar 

  • Pettitt, J.M. and Jermy, A.C. (1975) Pollen in hydrophilous angiosperms.Micron 5, 377–405.

    Google Scholar 

  • Pettitt, J.M., Ducker, S.C. and Knox, R.B. (1978)Amphibolis has no exine.Helobiae Newsletter 2, 19–21.

    Google Scholar 

  • Pettitt, J.M., Ducker, S. and Knox, B. (1981) Submarine pollination.Sci. Am. 244, 134–43.

    Google Scholar 

  • Pettitt, J.M., McConchie, C.A., Ducker, S.C. and Knox, R.B. (1984) Reproduction in seagrasses: pollen wall morphogenesis inAmphibolis antarctica and wall structure in filiform grains.Nord. J. Bot. 4, 199–216.

    Google Scholar 

  • Philbrick, C.T. (1988). Evolution of underwater outcrossing from aerial pollination systems: a hypothesis.Ann. Missouri Bot. Garden 75, 836–41.

    Google Scholar 

  • Philbrick, C.T. and Anderson, G.J. (1987) Implications of pollen/ovule ratios and pollen size for the reproductive biology ofPotamogeton and autogamy in aquatic angiosperms.Syst. Bot. 12, 98–105.

    Google Scholar 

  • Phillips, R.C., McMillan, C. and Bridges, K.W. (1983). Phenology of eelgrassZostera marina L., along latitudinal gradients in North America.Aquat. Bot. 15, 145–56.

    Google Scholar 

  • Rosenberg, O. (1901) Ueber die Pollenbildung vonZostera.Meddh. Stockh. Högskolas. Bot. Inst. 4, 3–21.

    Google Scholar 

  • Rubenstein, D.I. and Koehl, M.A.R. (1977) The mechanisms of filter feeding: some theoretical considerations.Am. Nat. 111, 981–94.

    Google Scholar 

  • Russel, W. B. (1981) Brownian motion of small particle suspended in liquids.Ann. Rev. Fluid Mech. 13, 425–55.

    Google Scholar 

  • Schindler, D.W. (1991) Lakes and oceans as functional wholes. InFundamentals of aquatic ecology (R.S.K. Barnes and K.H. Mann, eds), pp. 91–107. Blackwell Scientific Publications, London, UK.

    Google Scholar 

  • Schwanitz, G. (1967) Untersuchungun zur Postmeiotischen mikrosporogenese. II. Vergleichende analyse der Pollenentwicklung sub-und emers bluchender arten.Pollen Spores 9, 183–209.

    Google Scholar 

  • Sculthorpe, C.D. (1967)The Biology of Aquatic Vascular Plants. Edward Arnold, London. Reprinted 1985 by Koeltz Scientific Books, Königstein, Germany.

    Google Scholar 

  • Shimeta, J. and Jumars, P.A. (1991) Physical mechanisms and rates of particle capture by suspension feeders.Oceanogr. Mar. Biol. Ann. Rev. 29, 191–257.

    Google Scholar 

  • Stevenson, J.C. (1988) Comparative ecology of submerged grass beds in freshwater, estuarine and marine environments.Limnol. Oceanogr. 33, 867–93.

    Google Scholar 

  • Stewart, J.G. and Rüdenberg, L. (1980) Microsporocyte growth and meiosis inPhyllospadix torreyi, a marine monocotyledon.Am. J. Bot. 67, 949–54.

    Google Scholar 

  • Svedelius, N. (1904) On the life history ofEnalus acoroides (A contribution to the ecology of the hydrophilous plants).Ann. Roy. Bot. Gard. Peradeniya 2, 267–97.

    Google Scholar 

  • Svedelius, N. (1932) On the different types of pollination inVallisneria spiralis L. andVallisneria americana Michx.Svensk Botanisk Tidskrift 26, 1–12.

    Google Scholar 

  • Tomlinson, P.B. (1982)Anatomy of the Monocotyledon: VII Helobiae (Alismatidae). Oxford University Press, NY, USA.

    Google Scholar 

  • Vogel, S. (1981)Life in Moving Fluids. Princeton University Press, Princeton, USA.

    Google Scholar 

  • Yamashita, T. (1976) Über die Pollenbildung beiHalodule pinifolia undH. uninervis.Beitr. Biol. Pflanzen 52, 217–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackerman, J.D. Convergence of filiform pollen morphologies in seagrasses: Functional mechanisms. Evol Ecol 9, 139–153 (1995). https://doi.org/10.1007/BF01237753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237753

Keywords

Navigation