Skip to main content
Log in

Coevolutionary genetics of plants and pathogens

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

The genetic polymorphism maintained by host-pathogen coevolution is analysed in a multilocus model. The model assumes gene-for-gene interactions of the type commonly observed between host plants and their fungal pathogens. Unstable (epidemic) systems maintain more resistance genes, fewer virulence genes, and less overall genetic diversity than stable (endemic) diseases. The stability of the system depends primarily on demographic parameters, such as the pathogen's intrinsic rate of increase, rather than genetic parameters, such as the costs of resistance and virulence. At equilibrium the model predicts that the number of resistance alleles in each host plant follows a binomial distribution that depends on the cost to the pathogen for carrying virulence alleles. Similarly, the number of virulence alleles in each pathogen spore follows a binomial distribution that depends on one minus the cost to the host for carrying resistance alleles. Data from wild populations match the predicted binomial distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agrios, G. N. (1988)Plant Pathology, 3rd edn, Academic Press, NY, USA.

    Google Scholar 

  • Barrett, J. A. (1985) The gene-for-gene hypothesis: parable or paradigm. InEcology and Genetics of Host-Parasite Interactions. (D. Rollinson and R. M. Anderson, eds) pp. 215–25. Academic Press, New York.

    Google Scholar 

  • Burdon, J. J. (1987a)Diseases and plant population biology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Burdon, J. J. (1987b) Phenotypic and genetic patterns of resistance to the pathogenPhakopsora pachyrhizi in populations ofGlycine canescens.Oecol. 73, 257–67.

    Google Scholar 

  • Burdon, J. J. and Jarosz, A. M. (1992) Temporal variation in the racial structure of flax rust (Melampsora lini) populations growing on natural stands of wild flax (Linum marginale): localversus metapopulation dynamics.Plant Pathol. (in press).

  • Burdon, J. J., Jarosz, A. M. and Kirby, G. C. (1989) Pattern and patchiness in plant-pathogen interactions—causes and consequences.Ann. Rev. Ecol. Syst. 20, 119–36.

    Google Scholar 

  • Burdon, J. J., Brown, A. H. D. and Jarosz, A. M. (1990) The spatial scale of genetic interactions in host-pathogen coevolved systems. InPests, Pathogens and Plant Communities. (J. J. Burdon and S. R. Leather, eds) pp. 233–47. Blackwell, Oxford, UK.

    Google Scholar 

  • Callow, J. A. (1987) Models of host-pathogen interaction. InGenetics and Plant Pathogenesis. (P. R. Day and G. J. Jellis, eds) pp. 283–95. Blackwell, Oxford, UK.

    Google Scholar 

  • Clarke, D. D., Campbell, F. S. and Bevan, J. R. (1990) Genetic interactions betweenSenecio vulgaris and the powdery mildew fungusErysiphe fischeri. InPests, Pathogens and Plant Communities. (J. J. Burdon and S. R. Leather, eds) pp. 189–201. Blackwell, Oxford, UK.

    Google Scholar 

  • Crill, P. (1977) An assessment of stabilizing selection in crop variety development.Ann. Rev. Phytopath. 15, 185–202.

    Google Scholar 

  • Day, P. R. (1974)Genetics of Host-Parasite Interaction. W. H. Freeman, San Francisco, USA.

    Google Scholar 

  • Dinoor, A. and Eshed, N. (1987) The analysis of host and pathogen populations in natural ecosystems. InPopulations of Plant Pathogens: Their Dynamics and Genetics. (M. S. Wolfe and C. E. Caten, eds) pp. 75–88. Blackwell, Oxford, UK.

    Google Scholar 

  • Flor, H. H. (1956) The complementary genic systems in flax and flax rust.Adv. Genet.,8, 29–54.

    Google Scholar 

  • Flor, H. H. (1971) Current status of the gene-for-gene concept.Ann. Rev. Phytopath. 9, 275–96.

    Google Scholar 

  • Frank, S. A. (1989) The evolutionary dynamics of cytoplasmic male sterility.Am. Nat. 133, 345–76.

    Google Scholar 

  • Frank, S. A. (1991a) Ecological and genetic models of host-pathogen coevolution.Heredity 67, 73–83.

    Google Scholar 

  • Frank, S. A. (1991b) Spatial variation in coevolutionary dynamics.Evol. Ecol. 5, 193–217.

    Google Scholar 

  • Frank, S. A. (1992) Models of plant-pathogen coevolution.Trends Genet. (in press).

  • Gabriel, D. W. and Rolfe, B. G. (1990) Working models of specific recognition in plant-microbe interactions.Ann. Rev. Phytopath. 28, 365–91.

    Google Scholar 

  • Groth, J. V. and Roelfs, A. P. (1982) The effect of sexual and asexual reproduction on race abundance in cereal rust fungus populations.Phytopathology 72, 1503–7.

    Google Scholar 

  • Groth, J. V. and Roelfs, A. P. (1987) Analysis of virulence diversity in populations of plant pathogens. InPopulations of Plant Pathogens: Their Dynamics and Genetics. (M. S. Wolfe and C. E. Caten, eds) pp. 63–74. Blackwell, Oxford, UK.

    Google Scholar 

  • Hamer, J. E. (1991) Molecular probes for rice blast disease.Science 252, 632–3.

    Google Scholar 

  • Harry, I. B. and Clarke, D. D. (1986) Race-specific resistance in groundsel (Senecio vulgaris) to the powdery mildewErysiphe fischeri.New Phytol. 103, 167–75.

    Google Scholar 

  • Jarosz, A. M. and Burdon, J. J. (1990) Predominance of a single major gene for resistance toPhakopsora pachyrhizi in a population ofGlycine argyrea.Heredity 64, 347–53.

    Google Scholar 

  • Jarosz, A. M. and Burdon, J. J. (1991) Host-pathogen interactions in natural populations ofLinum marginale andMelampsora lini: II. Local and regional variation in patterns of resistance and racial structure.Evolution (in press).

  • Leonard, K. J. and Czochor, R. J. (1980) Theory of genetic interactions among populations of plants and their pathogens.Ann. Rev. Phytopath. 18, 237–58.

    Google Scholar 

  • Magurran, A. E. (1988)Ecological Diversity and its Measurement. Princeton University Press, Princeton, USA.

    Google Scholar 

  • May, R. M. (1974)Stability and Complexity in Model Ecosystems, 2nd edn, Princeton University Press, Princeton, USA.

    Google Scholar 

  • Nelson, R. R. (1973) The use of resistance genes to curb population shifts in plant pathogens. InBreeding Plants for Disease Resistance. (R. R. Nelson, ed) pp. 49–66. Pennsylvania State University Press, University Park, USA.

    Google Scholar 

  • Parker, M. A. (1985) The pleiotropy theory for polymorphism of disease resistance genes in plants.Evolution 44, 1872–5.

    Google Scholar 

  • Parlevliet, J. E. (1981) Stabilizing selection in crop pathosystems: an empty concept or a reality?Euphytica 30, 259–69.

    Google Scholar 

  • Person, C. (1959) Gene-for-gene relationships in host:parasite systems.Can. J. Bot. 37, 1101–30.

    Google Scholar 

  • Seger, J. (1988) Dynamics of some simple host-parasite models with more than two genotypes in each species.Phil. Trans. R. Soc. Lond. B 319, 541–55.

    Google Scholar 

  • Thompson, J. N. (1988) Variation in interspecific interactions.Ann. Rev. Ecol. Syst. 19, 65–87.

    Google Scholar 

  • Vanderplank, J. E. (1984)Disease Resistance in Plants, 2nd edn, Academic Press, NY, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, S.A. Coevolutionary genetics of plants and pathogens. Evol Ecol 7, 45–75 (1993). https://doi.org/10.1007/BF01237734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237734

Keywords

Navigation