Skip to main content
Log in

Gauss polynomials and the rotation algebra

  • Published:
Inventiones mathematicae Aims and scope

Summary

Newton's binomial theorem is extended to an interesting noncommutative setting as follows: If, in a ring,baab with γ commuting witha andb, then the (generalized) binomial coefficient\(\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)_r \) arising in the expansion

$$\left( {a + b} \right)^n = \sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} _\gamma a^{n - k} b^k $$

(resulting from these relations) is equal to the value at γ of the Gaussian polynomial

$$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right] = \frac{{\left[ n \right]}}{{\left[ k \right]\left[ {n - k} \right]}}$$

where [m]=(1-x m)(1-x m−1)...(1-x). (This is of course known in the case γ=1.)

From this it is deduced that in the (universal)C *-algebraA gq generated by unitariesu andv such thatvu=e 2πiθ uv, the spectrum of the self-adjoint element (u+v)+(u+v)* has all the gaps that have been predicted to exist-provided that either θ is rational, or θ is a Liouville number. (In the latter case, the gaps are labelled in the natural way-viaK-theory-by the set of all non-zero integers, and the spectrum is a Cantor set.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, G.E.: The Theory of Partitions. In: Rota, G.-C. (ed.) Encyclopedia of Mathematics and Its Applications, Vol. 2, Addison-Wesley, Reading Massachusetts, 1976

    Google Scholar 

  2. Andrews, G.E., Baxter, R.J., Forrester, P.J.: Eight-vertex SoS model and generalized Rogers-Ramanujan type identities. J. Statist. Phys.35, 193–266 (1984)

    Google Scholar 

  3. Avron, J.E., Simon, B.: Almost periodic Schrödinger operators, II. The density of states. Duke Math. J.50, 369–391 (1983)

    Google Scholar 

  4. Bellissard, J.: Almost periodicity in solid state physics andC *-algebras. In: Berg, C., Fuglede, B. (eds.) The Harold Bohr Centenary pp. 35–75, Mat.-Fys. Medd. Danske Vid. Selsk.42:3 (1989)

  5. Bellissard, J., Lima, R., Testard, D.: Almost periodic Schrödinger operators. In: Streit, L. (ed.) Mathematics+Physics, Lectures on Recent Results. Vol. 1 pp. 1–64, World Scientific Publishers, Singapore, 1985

    Google Scholar 

  6. Bellissard, J., Simon, B.: Cantor spectrum for the almost. Mathieu equation. J. Funct. Anal.48, 408–419 (1982)

    Google Scholar 

  7. Bhatia, R.: Perturbation Bounds for Matrix Eigenvalues. Pitman Research Notes in Mathematics Series 162, Longman, London, 1987

    Google Scholar 

  8. Chambers, W.G.: Linear-network model for magnetic breakdown in two dimensions. Phys. Rev. A140, 135–143 (1965)

    Google Scholar 

  9. Connes, A.:C * algèbres et géométrie différentielle. C.R. Acad. Sci. Paris290, 559–604 (1980)

    Google Scholar 

  10. Elliott, G.A.: Gaps in the spectrum of an almost periodic Schrödinger operator. C.R. Math. Rep. Acad. Sci. Canada4, 255–259 (1982)

    Google Scholar 

  11. Elliott, G.A.: Gaps in the spectrum of an almost periodic Schrödinger operator. II. In: Araki, H., Effros, E.G. (eds.) Geometric Methods in Operator Algebras. Pitman Research Notes in Mathematics Series 123, pp. 181–191, Longman, London, 1986

    Google Scholar 

  12. Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique) (Preprint)

  13. Herman, M.: Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension 2. Comment. Math. Helv.58, 453–502 (1983)

    Google Scholar 

  14. Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B14, 2239–2249 (1976)

    Google Scholar 

  15. Jimbo, M.: Aq-difference analogue ofU (g) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1986)

    Google Scholar 

  16. Peierls, R.: Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys.80, 763–791 (1933)

    Google Scholar 

  17. Pimsner, M., Voiculescu, D.: Exact sequences forK-groups and Ext-groups of certain crossproductC *-algebras. J. Oper. Theory4, 93–118 (1980)

    Google Scholar 

  18. Riedel, N.: On the topological stable rank of irrational rotation algebras. J. Oper. Theory13, 143–150 (1985)

    Google Scholar 

  19. Sinai, Ya.G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys.46, 861–909 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, MD., Elliott, G.A. & Yui, N. Gauss polynomials and the rotation algebra. Invent Math 99, 225–246 (1990). https://doi.org/10.1007/BF01234419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01234419

Keywords

Navigation