Skip to main content
Log in

Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: Implications for cell and gene therapy

  • Published:
Somatic Cell and Molecular Genetics

Abstract

An assessment of the replicative life-span of myoblasts is of fundamental importance in designing treatment strategies for Duchenne muscular dystrophy (DMD) based on cell or gene therapy. To ascertain myoblast life-span, or the total number of cell divisions of which a myoblast was capable, we serially passaged and counted the progeny of individual myoblasts until they senesced. We compared the life-span of myoblasts from eight DMD patients with controls: three individuals with no known neuromuscular disease, three DMD carriers, and three patients with other muscle degenerative diseases. A decline in replicative capacity was observed with increasing donor age, which was markedly accelerated for DMD relative to control myoblasts. The average myoblast from a 5-year-old control was capable of 56 doublings, or a potential yield of approximately 1017 cells per cell. By contrast, at 2 years of age, the typical age at clinical onset, only 6% of DMD myoblasts had a life-span of 50 doublings in tissue culture, and by age 7 DMD myoblasts capable of 10 doublings were rare. Our results suggest that the myoblasts (satellite cells) of even the youngest DMD patients have undergone extensive division in an attempt to regenerate degenerating myofibers. These findings have implications for therapeutic intervention in DMD involving genetic engineering and myoblast implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  1. Kunkel, L.A., Monaco, A.P., Middlesworth, W., Ochs, H.D., and Latt, S.A. (1985).Proc. Natl. Acad. Sci. USA 824778–4782.

    PubMed  Google Scholar 

  2. Liechti-Gallati, S., Koenig, M., Kunkel, L.M., Frey, D., Boltshauser, E., Schneider, V., Braga, S. and, Moser, H. (1989).Hum. Genet. 81343–348.

    PubMed  Google Scholar 

  3. Ray, P.N., Belfall, B., Duff, C., Logan, C., Kean, V., Thompson, M.W., Sylvester, J.E., Gorski, J.L., Schmickel, R.D., and Worton, R.G. (1985).Nature 318672–675.

    PubMed  Google Scholar 

  4. Webster, C., Silberstein, L., Hays, A.P., and Blau, H.M. (1988).Cell 32503–513.

    Google Scholar 

  5. Bradley, W.G., Budgson, P., Larson, P.F., Papapetropoulos, T.A., and Jenkison, M. (1972).J. Neurol. Neurosurg. Psych. 35451–455.

    Google Scholar 

  6. Pearson, C.M. (1962).Brain 85109–126.

    PubMed  Google Scholar 

  7. Morizumi, H., Hizawa, K., Nunomura, S., and Ii, K. (1984).Acta Pathol. Jpn. 341221–1242.

    PubMed  Google Scholar 

  8. Watkins, S.C., and Cullen, M.J. (1985).Neuropathol. Appl. Neurobiol. 11447–460.

    PubMed  Google Scholar 

  9. Schmalbruch, H. (1984).Neurology 3460–65.

    PubMed  Google Scholar 

  10. Lipton, B.H. (1979). InMuscle Regeneration (ed.) Mauro, A. (Raven Press, New York), pp. 31–40.

    Google Scholar 

  11. Ontell, M., Feng, K.C., Klueber, K., Dunn, R.F., and Taylor, F. (1984).Anat. Rec. 208159–174.

    PubMed  Google Scholar 

  12. Zaks, S.I., and Sheff, M.F. (1982).Muscle Nerve 5152–161.

    PubMed  Google Scholar 

  13. Cullen, M.J., and Watkins, S.C. (1981).Adv. Physiol. Sci. 24341–349.

    Google Scholar 

  14. Wakayama, Y., and Schotland, D.L. (1979). InMuscle Regeneration (ed.) Mauro, A. (Raven Press, New York), pp. 121–129.

    Google Scholar 

  15. Hellmuth, A.E., and Allbrook, D. (1973). InBasic Research in Myology, Part 1, (ed.) Kakulas, B.A. (Excerpta Medica, Amsterdam), pp. 343–345.

    Google Scholar 

  16. Moss, F.P., and Leblond, C.P. (1971).Anat. Rec. 170421–436.

    PubMed  Google Scholar 

  17. Aloisis, M., Mussini, I., and Schiaggino, S. (1973). InBasic Research in Myology, Part 1, (ed.) Kakulas, B.A. (Excerpta Medica, Amsterdam), pp. 338–342.

    Google Scholar 

  18. Carlson, B.M. (1973).Am. J. Anat. 137119–150.

    PubMed  Google Scholar 

  19. Webster, C., Filippi, G., Rinaldi, A., Mastropaolo, C., Tondi, M., Siniscalco, M., and Blau, H.M. (1986).Hum. Genet. 7474–80.

    PubMed  Google Scholar 

  20. Blau, H.M., and Webster, C. (1981).Proc. Natl. Acad. Sci. U.S.A. 785623–5627.

    PubMed  Google Scholar 

  21. Chiu, C.-P., and Blau, H.M. (1984).Cell 37879–887.

    PubMed  Google Scholar 

  22. Walsh, F.S., Dickson, G., Moore, S.E., and Barton, C.H. (1989).Nature 339516.

    Google Scholar 

  23. Webster, C., Pavlath, G.K., Parks, D.R., Walsh, F.S., and Blau, H.M. (1987).Exp. Cell Res. 174252–265.

    Google Scholar 

  24. Blau, H.M., Webster, C., and Pavlath, G.K. (1983).Proc. Natl. Acad. Sci. U.S.A. 804856–4860.

    PubMed  Google Scholar 

  25. Hauschka, S.D., Linkhart, T.A., Clegg, C., and Merrill, G. (1979). InMuscle Regeneration (ed.) Mauro, A. (Raven Press, New York), pp. 311–322.

    Google Scholar 

  26. Hayflick, L. (1965).Exp. Cell Res. 37614–636.

    PubMed  Google Scholar 

  27. Rheinwald, J.G., and Green, H. (1975).Cell 6331–344.

    PubMed  Google Scholar 

  28. Hudgson, P., Pearce, G.W., and Walton, J.N. (1967).Brain 90565–582.

    PubMed  Google Scholar 

  29. Dubowitz, V., and Brooke, M.H. (1973).Muscle Biopsy: A Modern Approach. Major Problems in Neurology Monograph Series, Vol. 2 (W.B. Saunders, Philadelphia).

    Google Scholar 

  30. Blau, H.M., Webster, C., Chiu, C.-P., Guttman, S., and Chandler, F. (1983).Exp. Cell Res. 144495–502.

    PubMed  Google Scholar 

  31. Ionasescu, V., and Ionasescu, R. (1982).J. Neurol. Sci. 5479–87.

    PubMed  Google Scholar 

  32. Yasin, R., Kundy, D., and Thompson, E.J. (1982).Exp. Cell Res. 138419–422.

    PubMed  Google Scholar 

  33. Hauschka, S.D. (1974).Dev. Biol. 37345–368.

    PubMed  Google Scholar 

  34. Cossu, G., Cicinelli, P., Fieri, C., Coletta, M., and Molinaro, M. (1985).Exp. Cell Res. 180402–411.

    Google Scholar 

  35. Miller, J.B., and Stockdale, F.E. (1986).J. Cell Biol. 1032197–2208.

    PubMed  Google Scholar 

  36. Toutant, M., Montarras, D., and Fiszman, M.Y. (1984).Exp. Biol. Med. 910–15.

    Google Scholar 

  37. White, N.K., Bonner, P.H., Nelson, D.R., and Hauschka, S.D. (1975).Dev. Biol. 44346–361.

    PubMed  Google Scholar 

  38. Ontell, M. (1979). InMuscle Regeneration (ed.) Mauro, A. (Raven Press, New York), pp. 137–146.

    Google Scholar 

  39. Wright, W.E. (1985).Exp. Cell Res. 157343–354.

    PubMed  Google Scholar 

  40. Koenig, M., Hoffman, E.P., Bertelson, C.J., Monaco, A.P., Feener, C., and Kunkel, L.M. (1987).Cell 50509–517.

    PubMed  Google Scholar 

  41. Feener, C.A., Koenig, M., and Kunkel, L.M. (1989).Nature 338509–511.

    PubMed  Google Scholar 

  42. Partridge, T.A., Morgan, J.E., Coulton, G.R., Hoffman, E.P., and Kunkel, L.M. (1989).Nature 337176–179.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webster, C., Blau, H.M. Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: Implications for cell and gene therapy. Somat Cell Mol Genet 16, 557–565 (1990). https://doi.org/10.1007/BF01233096

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233096

Keywords

Navigation