Skip to main content
Log in

Classical and quantum mechanical systems of Toda-lattice type

III. Joint eigenfunctions of the quantized systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In a previous paper it was shown that certain Schrödinger operatorsH=Δ − V onR such as the Hamiltonians for the quantized one-dimensional lattice systems of Toda type (either non-periodic or periodic) are part of a family of mutually commuting differential operatorsH=L 1, ...,L onR . The potentialV in these cases is associated with a finite root system of rank ℓ, and the top-order symbols of the operatorsL i are a set of functionally independent polynomials that generate the polynomial invariants for the Weyl groupW of the root system. In this paper it is proved that the spaces of joint eigenfunctions for the family of operatorsL i have dimension |W|. In the case of the periodic Toda lattices it is shown that the Hamiltonian has only bound states. An integrable holomorphic connection with periodic coefficients is constructed on a trivial |W|-dimensional vector bundle over ℂ, and it is shown that the joint eigenfunctions correspond exactly to the covariant constant sections of this bundle. Hence the eigenfunctions can be calculated (in principle) by integrating a system of ordinary differential equations. These eigenfunctions are holomorphic functions on ℂ, and are multivariable generalizations of the classical Whittaker functions and Mathieu functions. A generalization of Hill's determinant method is used to analyze the monodromy of the connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourbaki, N.: Groupes et algébres de Lie, Chaps. IV–VI (Éléments de mathématique, Fasc. XXXIV). Paris: Hermann 1968

    Google Scholar 

  2. Dobrokhotov, S. Yu., Maslov, V.P.: Finite-zone, almost-periodic solutions in WKB approximations. J. Sov. Math.16, 1433–1508 (1981)

    Google Scholar 

  3. Faddeev, L.D.: Quantum completely-integrable models in field theory. In: Mathematical physics reviews, Vol. 1. Novikov, S.P. (ed.). Chur: Harwood Academic Publishers 1980

    Google Scholar 

  4. Gel'fand, I.M., Shilov, G.E.: Generalized functions, Vol. 2: Spaces of fundamental functions (transl. by M. Friedman et al.). New York: Academic Press 1967

    Google Scholar 

  5. Goodman, R.: Elliptic and subelliptic estimates for operators in an enveloping algebra. Duke Math. J.47, 819–833 (1980)

    Google Scholar 

  6. Goodman, R.: Horospherical functions on symmetric spaces. Canadian Math. Soc. Conference Proceedings, Vol. 1, pp. 125–133. Providence, R.I.: A.M.S. 1981

    Google Scholar 

  7. Goodman, R., Wallach, N.R.: Whittaker vectors and conical vectors. J. Funct. Anal.39, 199–279 (1980)

    Google Scholar 

  8. Goodman, R., Wallach, N.R.: Classical and quantum-mechanical systems of Toda lattice type. I. Commun. Math. Phys.83, 355–386 (1982)

    Google Scholar 

  9. Goodman, R., Wallach, N.R.: Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle. J. Reine Angew. Math.347, 69–133; erratum352, 220 (1984)

    Google Scholar 

  10. Goodman, R., Wallach, N.R.: Classical and quantum-mechanical systems of Toda lattice type. II. Commun. Math. Phys.94, 177–217 (1984)

    Google Scholar 

  11. Gutzwiller, M.: The quantum mechanical Toda lattice. Ann. Phys.124, 347–381

  12. Gutzwiller, M.: The quantum mechanical Toda lattice. II. Ann. Phys.133, 304–331

  13. Harish-Chandra: Spherical functions on a semi-simple Lie group. I. Am. J. Math.80, 241–310 (1958)

    Google Scholar 

  14. Hashizume, M.: Whittaker functions on semisimple Lie groups. Hiroshima Math. J.12, 259–293 (1982)

    Google Scholar 

  15. Helgason, S.: Groups and geometric analysis. New York: Academic Press 1984

    Google Scholar 

  16. Hill, G.W.: On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon. Acta Math.8, 1–36 (1886)

    Google Scholar 

  17. von Koch, H.: Sur les déterminants infinis et les équations différentielles linéaires. Acta Math.16, 217–295 (1892)

    Google Scholar 

  18. von Koch, H.: Sur un nouveau critère de convergence pour les déterminants infinis. Ark. Mat. Astronomi och Fysik 7, No. 4 (1912)

    Google Scholar 

  19. Kostant, B.: On Whittaker vectors and representation theory. Invent. Math.48, 101–184 (1978)

    Google Scholar 

  20. Nelson, E., Stinespring, W.F.: Representation of elliptic operators in an enveloping algebra. Am. J. Math.81, 547–560 (1959)

    Google Scholar 

  21. Olive, D., Turok, N.: The symmetries of Dynkin diagrams and the reduction of Toda field equations. Nucl. Phys. B215 [FS7], 470–494 (1983)

    Google Scholar 

  22. Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to Lie algebras. Phys. Rep.94, 313–404 (1983)

    Google Scholar 

  23. Riesz, F.: Les systèmes d'équations linéaires à une infinité d'inconnues. Paris: Gauthier-Vaillars 1913

    Google Scholar 

  24. Simons, B.: Adv. Math.24, 244–273 (1977)

    Google Scholar 

  25. Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge: Cambridge University Press 1927

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Research partially supported by NSF Grant DMS 83-01582-01

Research partially supported by NSF Grant DMS 84-02684

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, R., Wallach, N.R. Classical and quantum mechanical systems of Toda-lattice type. Commun.Math. Phys. 105, 473–509 (1986). https://doi.org/10.1007/BF01205939

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01205939

Keywords

Navigation