Skip to main content
Log in

Global stability of a class of discontinuous dual billiards

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

An infinite-parameter family of discontinuous area-preserving maps is studied, using geometrical methods. Necessary and sufficient conditions are determined for the existence of some bounding invariant sets, which guarantee global stability. It is shown that under some additional constraints, all orbits become periodic, most of them Lyapounov stable, and with a maximal period in any bounded domain of phase space. This yields a class of maps acting on a discrete phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moser, J.K.: Stable and random motions in dynamical systems. Princeton, NJ: Princeton University Press 1973

    Google Scholar 

  2. Siegel, C.L., Moser, J.K.: Lectures on celestial mechanics. Berlin, Heidelberg, New York: Springer 1971, p. 183

    Google Scholar 

  3. Moser, J.K.: Lectures on Hamiltonian systems. Mem. Am. Math. Soc.81, 1 (1968)

    Google Scholar 

  4. Henon, M., Wisdom, J.: The Benettin-Strelcyn oval billiard revisited. Physica8D, 157 (1983)

    Google Scholar 

  5. Devaney, R.L.: A piecewise linear model for the zones of instability of an area-preserving map. Physica10 D, 387 (1984)

    Google Scholar 

  6. Zemlyakov, A.N., Katok, B.: Mat. Zametki18, 291 (1975) [English transl.: Math. Notes18, 760 (1976)]

    Google Scholar 

  7. Richens, P., Berry, M.: Pseudointegrable systems in classical and quantum mechanics. Physica2 D, 495 (1981)

    Google Scholar 

  8. Eckardt, B., Ford, J., Vivaldi, F.: Analytically solvable dynamical systems which are not integrable. Physica13 D, 339 (1984)

    Google Scholar 

  9. Hammer, P.C.: Unsolved problems. Proc. Symp. Pure Math., Vol. VII. Am. Math. Soc. (1963)

  10. Moser, J.K.: Is the solar system stable? Math. Intell.1, 2, 65 (1976)

    Google Scholar 

  11. Greene, J.M.: Two-dimensional measure-preserving maps. J. Math. Phys.9, 760 (1968)

    Google Scholar 

  12. Arnold, V.I.: Mathematical methods of classical mechanics. Moskow: Nauka 1974 [English transl.: Berlin, Heidelberg, New York: Springer 1968, p. 61]

    Google Scholar 

  13. Marcus, D.A.: Number fields, p. 18. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  14. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Paris: Gauthier-Villars 1892. NASA Translation TT-F450, Washington 1976. Art. 36

    Google Scholar 

  15. Ford, J.: How random is a coin toss? Physics Today36 (4), 40 (1983)

    Google Scholar 

  16. Rannou, F.: Numerical study of discrete plane area-preserving mappings. Astron. Astrophys.31, 289 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. E. Lanford

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivaldi, F., Shaidenko, A.V. Global stability of a class of discontinuous dual billiards. Commun.Math. Phys. 110, 625–640 (1987). https://doi.org/10.1007/BF01205552

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01205552

Keywords

Navigation