Skip to main content
Log in

Quantitative analysis of GABA-immunoreactive synapses in the inner plexiform layer of theBufo marinus retina: identification of direct output to ganglion cells and contacts with dopaminergic amacrine cells

  • Published:
Journal of Neurocytology

Summary

We have recently reported that about 50% of amacrine cells and some of the bipolar and ganglion cells are GABA-immunoreactive in the retina ofBufo marinus. Synapses formed by these elements in the inner plexiform layer were studied. GABA-immunoreactive amacrine cell processes were found most frequently in synaptic contact with non-immunoreactive amacrine cells. Double-label experiments showed that some of these non-GABA-immunoreactive elements contain tyrosine hydroxylase immunoreactivity. Another source of input to the GABA-immunoreactive amacrine cells were the bipolar cells; some of which were GABA-immunoreactive. GABA-immunoreactive amacrine cells synapsed also onto bipolar cell terminals, and ganglion cell dendrites that were identified by the retrograde transport of horseradish peroxidase from the optic nerve. Synapses between GABA-immunoreactive amacrine cells and bipolar and ganglion cells were non-uniformly distributed in the inner plexiform layer. Synaptic contacts with bipolar cells were more frequent in the OFF-sublamina, and those with ganglion cell dendrites in the ON-sublamina. These results demonstrate that GABA-immunoreactive amacrine cells (1) preferentially synapse with OFF-responding bipolar and ON-centre ganglion cells in the through-pathway, (2) synapse with tyrosine hydroxylase-immunoreactive amacrine cells in both the OFF- and ON-sublaminae, and (3) synapse directly with GABA-immunoreactive ganglion cells. The synapses between GABA-immunoreactive amacrine and GABA-immunoreactive ganglion cells may inhibit the centrally projecting inhibitory ganglion cells, causing disinhibition in the visual centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. C. (1977) Technical considerations on the use of horseradish peroxidase as a neuronal marker.Neuroscience 2, 141–5.

    PubMed  Google Scholar 

  • Agardh, E., Bruun, A., Ehinger, B., Ekström, P., Van Veen, T. &Wu, J.-Y. (1987) Gamma-aminobutyric acid and glutamic acid decarboxylase immunoreactive neurons in the retina of different vertebrates.Journal of Comparative Neurology 258, 622–30.

    PubMed  Google Scholar 

  • Belgum, J. H., Dvorak, D. R. &Mcreynolds, J. S. (1982) Sustained synaptic input to ganglion cells of mudpuppy retina.Journal of Physiology 326, 91–108.

    PubMed  Google Scholar 

  • Bonaventure, N. &Wioland, N. (1981) Involvement of GABA in receptive field organization in the frog retina.Vision Research 21, 1653–5.

    PubMed  Google Scholar 

  • Bonaventure, N., Wioland, N. &Roussel, G. (1980) Effects of amino acids (GABA, glycine, taurine) and of their antagonists (picrotoxin, strychnine) on spatial and temporal features of frog retinal ganglion cell responses.Pflügers Archives 385, 51–64.

    Google Scholar 

  • Chun, M. H. &Wässle, H. (1989) GABA-like immunoreactivity in the cat retina: electron microscopy.Journal of Comparative Neurology 279, 55–67.

    PubMed  Google Scholar 

  • Davanger, S., Ottersen, O. P. &Storm-Mathisen, J. (1991) Glutamate, GABA and glycine in the human retina: an immunocytochemical investigation.Journal of Comparative Neurology 311, 483–94.

    PubMed  Google Scholar 

  • Dowling, J. E. (1968) Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates.Proceedings of the Royal Society, Series B 170, 205–28.

    Google Scholar 

  • Dubin, M. W. (1970) The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopic analysis.Journal of Comparative Neurology 140, 479–506.

    PubMed  Google Scholar 

  • Ehinger, B., Ottersen, O. P., Storm-Mathisen, J. &Dowling, J. E. (1988) Bipolar cells in the turtle retina are strongly immunoreactive for glutamate.Proceedings of the National Academy of Sciences (USA) 85, 8321–5.

    Google Scholar 

  • Frumkes, T. E., Miller, R. F., Slaughter, M. &Dacheux, R. F. (1981) Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. III. Amacrine-mediated inhibitory influences on ganglion cell receptive field organization.Journal of Neurophysiology 45, 783–804.

    PubMed  Google Scholar 

  • Gábriel, R., Straznicky, C. &Wye-Dvorak, J. (1992a) GABA-like immunoreactive neurons in the retina ofBufo marinus: evidence for the presence of GABA-containing ganglion cells.Brain Research 571, 175–79.

    PubMed  Google Scholar 

  • Gábriel, R., Zhu, B. &Straznicky, C. (1992b) Synaptic contacts of tyrosine hydroxylase immunoreactive elements in the inner plexiform layer of the retina ofBufo marinus.Cell and Tissue Research 267, 525–34.

    PubMed  Google Scholar 

  • Grünert, U. &Wässle, H. (1990) GABA-like immunoreactivity in the macaque monkey retina: a light- and electron microscopic study.Journal of Comparative Neurology 297, 509–24.

    PubMed  Google Scholar 

  • Hiscock, J. &Straznicky, C. (1989a) Morphological characterization of substance P-like immunoreactive amacrine cells in the anuran retina.Vision Research 29, 293–301.

    PubMed  Google Scholar 

  • Hiscock, J. &Straznicky, C. (1989b) Neuropeptide Y-like immunoreactive amacrine cells in the retina ofBufo marinus.Brain Research 494, 55–64.

    PubMed  Google Scholar 

  • Hollyfield, J. G., Rayborn, M. E., Sarthy, P. V. &Lam, D. M. K. (1979) The emergence, localization and maturation of transmitter systems during development of the retina inXenopus laevis.Journal of Comparative Neurology 188, 587–98.

    PubMed  Google Scholar 

  • Kolb, H., Cuenca, N. &Decorver, L. (1991) Postembedding immunocytochemistry for GABA and glycine reveals the synaptic relationships of the dopaminergic amacrine cell of the cat retina.Journal of Comparative Neurology 310, 267–84.

    PubMed  Google Scholar 

  • Koontz, M. A. &Hendrickson, A. E. (1990) Distribution of GABA-immunoreactive amacrine cell synapses in the inner plexiform layer of macaque monkey retina.Visual Neuroscience 5, 17–28.

    PubMed  Google Scholar 

  • Kosaka, T., Tauchi, M. &Dahl, J. (1988) Cholinergic neurons containing GABA-like and/or GAD-like immunoreactivities in various brain regions of the rat.Experimental Brain Research 70, 605–17.

    Google Scholar 

  • Lukasiewitz, P. D. &Werblin, F. S. (1990) The spatial distribution of excitatory and inhibitory inputs to ganglion cell dendrites in the tiger salamander retina.Journal of Neuroscience 10, 210–21.

    PubMed  Google Scholar 

  • Marc, R. E., Liu, W.-L. S., Kalloniatis, M., Raiguel, S. F. &Van Haesendonck, E. (1990) Patterns of glutamate immunoreactivity in the goldfish retina.Journal of Neuroscience 10, 4006–34.

    PubMed  Google Scholar 

  • Massey, S. C. (1990) Cell types using glutamate as a neurotransmitter in the vertebrate retina.Progress in Retinal Research 9, 399–425.

    Google Scholar 

  • Mcguire, B. A., Stevens, J. K. &Sterling, P. (1984) Microcircuitry of bipolar cells in cat retina.Journal of Neuroscience 4, 2920–38.

    Google Scholar 

  • Miller, R. F., Frumkes, T. E., Slaughter, M. &Dacheux, R. F. (1981) Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. II. Amacrine and ganglion cells.Journal of Neurophysiology 45, 764–82.

    PubMed  Google Scholar 

  • Mosinger, J. L., Yazulla, S. &Studholme, K. M. (1986) GABA-like immunoreactivity in the vertebrate retina: a species comparison.Experimental Eye Research 42, 631–44.

    PubMed  Google Scholar 

  • Muller, J. F. &Marc, R. E. (1990) GABAergic and glycinergic pathways in the inner plexiform layer of the goldfish retina.Journal of Comparative Neurology 291, 281–304.

    PubMed  Google Scholar 

  • Nguyen, V.-S. &Straznicky, C. (1989) The development and the topographic organization of the retinal ganglion cell layer inBufo marinus.Experimental Brain Research 75, 345–53.

    Google Scholar 

  • Nishimura, C., Ida, S. &Kuriyama, K. (1981) Alteration of GABA system in frog retina following short light and dark adaptations — a quantitative comparison with retinal taurine.Brain Research 219, 433–8.

    PubMed  Google Scholar 

  • Pierce, M. E. &Besharse, J. C. (1988) Circadian regulation of retinomotor movements: II. The role of GABA in the regulation of cone position.Brain Research 270, 279–87.

    Google Scholar 

  • Pourcho, R. G. &Goebel, D. J. (1988) Colocalization of substance P and -γ-aminobutyric acid in amacrine cells of the cat retina.Brain Research 447, 164–8.

    PubMed  Google Scholar 

  • Pourcho, R. G. &Owczarzak, M. T. (1989) Distribution of GABA-immunoreactivity in the cat retina: a light- and electronmicroscopic study.Visual Neuroscience 2, 425–35.

    PubMed  Google Scholar 

  • Pourcho, R. G., Goebel, D. M. &Reynolds, J. S. (1984) Autoradiographic studies of (3H)glycine, (3H)GABA, and (3H)muscimol uptake in the mudpuppy retina.Experimental Eye Research 39, 69–81.

    PubMed  Google Scholar 

  • Smiley, J. F. &Basinger, S. F. (1990) Glycine stimulates calcium-independent release of [3H]-GABA from isolated retinas ofXenopus laevis.Visual Neuroscience 4, 337–48.

    PubMed  Google Scholar 

  • Sterling, P., Freed, M. &Smith, R. G. (1986) Microcircuitry and functional architecture of the cat retina.Trends in Neurosciences 9, 186–92.

    Google Scholar 

  • Stirling, V. R. &Merrill, E. G. (1987) Functional morphology of frog retinal ganglion cells and their central projections: the dimming detectors.Journal of Comparative Neurology 258, 477–95.

    PubMed  Google Scholar 

  • Stone, S. &Schütte, M. (1991) Physiological and morphological properties of off- and on-center bipolar cells in theXenopus retina: effects of glycine and GABA.Visual Neuroscience 7, 363–76.

    PubMed  Google Scholar 

  • Straznicky, C., Tóth, P. &Nguyen, V. S. (1990) Morphological classification and retinal distribution of large ganglion cells in the retina ofBufo marinus.Experimental Brain Research 79, 345–56.

    Google Scholar 

  • Vaney, D. I. (1990) The mosaic of amacrine cells in the mammalian retina.Progress in Retinal Research 9, 49–100.

    Google Scholar 

  • Vaney, D. I. &Young, H. M. (1988) GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina.Brain Research 438, 369–73.

    PubMed  Google Scholar 

  • Voaden, M. J., Marshall, J. &Murani, M. (1974) The uptake of [3H]-γ-amino butyric acid and [3H]glycine by isolated retina of frog.Brain Research 67, 115–32.

    PubMed  Google Scholar 

  • Wässle, H. &Chun, M. H. (1988) Dopaminergic and idoleamine-accumulating amacrine cells express GABA- like immunoreactivity in the cat retina.Journal of Neuroscience 8, 3383–94.

    PubMed  Google Scholar 

  • Watt, C. B. (1991) A re-examination of enkephalin's coexistence with gamma-aminobutyric acid in amacrine cells of the larval tiger salamander retina.Brain Research 551, 351–4.

    PubMed  Google Scholar 

  • Yang, C. -Y. &Yazulla, S. (1988) Localization of putative GABAergic neurons in the larval tiger salamander retina by immunocytochemical and autoradiographic methods.Journal of Comparative Neurology 277, 96–108.

    PubMed  Google Scholar 

  • Yang, C. -Y., Lukasiewicz, P., Maguire, G., Werblin, F. S. &Yazulla, S. (1991) Amacrine cells in the tiger salamander retina: morphology, physiology and neuro-transmitter identification.Journal of Comparative Neurology 312, 19–32.

    PubMed  Google Scholar 

  • Yazulla, S. (1986) GABAergic mechanism in the retina.Progress in Retinal Research 5, 1–52.

    Google Scholar 

  • Yazulla, S., Studholme, K. M. &Wu, J. -Y. (1987) GABAergic input to the synaptic terminals of mbl bipolar cells in the goldfish retina.Brain Research 411, 400–5.

    PubMed  Google Scholar 

  • Yazulla, S. &Yang, C.-Y. (1988) Colocalization of GABA and glycine immunoreactivities in a subset of retinal neurons in tiger salamander.Neuroscience Letters 95, 37–41.

    PubMed  Google Scholar 

  • Yazulla, S. &Zucker, C. L. (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina.Visual Neuroscience 1, 13–29.

    PubMed  Google Scholar 

  • Zhang, Y. &Straznicky, C. (1991) The morphology and distribution of photoreceptors in the retina ofBufo marinus.Anatomy and Embryology 183, 97–104.

    PubMed  Google Scholar 

  • Zhu, B. &Straznicky, C. (1990a) Dendritic morphology and retinal distribution of tyrosine hydroxylase-like immunoreactive amacrine cells inBufo marinus.Anatomy and Embryology 181, 365–71.

    PubMed  Google Scholar 

  • Zhu, B. &Straznicky, C. (1990b) Morphology and distribution of serotonin-like immunoreactive amacrine cells in the retina ofBufo marinus.Visual Neuroscience 5, 371–8.

    PubMed  Google Scholar 

  • Zhu, B., Hiscock, J. &Straznicky, C. (1990) The changing distribution of neurons in the inner nuclear layer from metamorphosis to adult: a morphometric analysis of the anuran retina.Anatomy and Embryology 181, 585–94.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Department of Zoology, Attila József University, Szeged, Hungary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gábriel, R., Straznicky, C. Quantitative analysis of GABA-immunoreactive synapses in the inner plexiform layer of theBufo marinus retina: identification of direct output to ganglion cells and contacts with dopaminergic amacrine cells. J Neurocytol 22, 26–38 (1993). https://doi.org/10.1007/BF01183973

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01183973

Keywords

Navigation