Skip to main content
Log in

Remelting phenomena in the process of splat solidification

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A combined theoretical and experimental study is reported which investigates remelting phenomena during the splat cooling of two liquid-metal droplets impacting sequentially on a substrate. Under conditions of sufficiently high superheat it was proposed theoretically and demonstrated experimentally that an initial deposit is remelted by the subsequent impact of molten material. It is shown that the amount of superheat as well as the variation of thermophysical properties, particularly the latent heat and the melting temperature, influence the degree of remelting. Experimental findings supported to a certain extent the theoretical model assumptions that the splats could be represented by thin discs and that the heat transfer and solidification within the splat propagates in the axial direction only. However, the experiments showed that these assumptions are better suited for the central region of the splat. The occurrence of remelting often depended on the radial location for a given amount of superheat. For most part, the splat exhibited globular microstructure. Lamellar structures were observed near the top and the periphery of the splat, indicating slower cooling rates at these locations. The theoretical model constituted a good compromise between accuracy and simplicity and predicted the correct trends of the remelting phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Specific heat (J kg−1 K−1)

d :

Diameter of a spherical droplet (mm)

D :

Diameter of the splat (mm)

h a :

Convective heat-transfer coefficient (W m−2K−1)

h c :

Contact heat-transfer coefficient (Wm−2K−1)

H :

Height of the splat (mm)

I :

Number of nodes in the axial direction in a splat

k :

Thermal conductivity (W m−1 K−1)

K f :

Freezing kinetics coefficient (m s−1K−1)

L :

Latent heat (J kg−1)

M :

Number of nodes in the radial direction in a substrate

N :

Number of nodes in the axial direction in a substrate

r :

Radial coordinate (mm)

R :

Radius of a splat (mm)

Δr :

Increment of radial coordinate (mm)

t :

Time (s)

t′ :

Time lapsed since the solidification of the bottom splat starts

T :

Temperature (°C)

T f :

Equilibrium freezing temperature (°C)

T 0 :

Initial temperature of the top splat (°C)

T :

Initial temperature of the substrate or ambient air temperature (°C)

V :

Interface velocity (m s−1)

z :

Axial coordinate (mm)

Δz :

Increment of axial coordinate (mm)

ξ :

Spread factor

ϱ :

Density (kg m−3)

l :

Liquid

m :

Index taking on the values s for solid or l for liquid

s :

Solid

b :

Bottom of control volume containing the freezing interface

i :

Interface

j :

Index taking on the values 1 for the first (bottom) splat or 2 for the second (top) splat

sup :

Amount of superheat of the second splat

t :

Top of control volume containing the freezing interface

1:

First splat

2:

Second splat

References

  1. H. Jones, “Rapid solidification of metals and alloys”, Monograph 8 (Institution of Metallurgists, London, 1982).

    Google Scholar 

  2. E. Gutierrez-Miravete, PhD thesis, Massachusetts Institute of Technology (1985).

  3. S. Annavarapu, D. Apelian andA. Lawley,Metall. Trans. 21A (1990) 3237.

    Article  CAS  Google Scholar 

  4. R. H. Bricknell,ibid. 7A (1986) 583.

    Article  Google Scholar 

  5. R. G. Brooks, C. Moore, A. G. Leatham andJ. S. Coombs,Powder Metall. 2 (1977) 100.

    Article  Google Scholar 

  6. T. R. Anantharaman andC. Suryanarayana,J. Mater. Sci. 6 (1971) 1111.

    Article  Google Scholar 

  7. P. Predecki, A. W. Mullendore andN. G. Grant,Trans. Metall. Soc. AIME 233 (1965) 1581.

    CAS  Google Scholar 

  8. W. E. Brower, Jr,R. Strachan andM. C. Flemings,AFS Cast Metals Res. J. 6 (1970) 176.

    Google Scholar 

  9. M. G. Scott,J. Mater. Sci. 9 (1974) 1372.

    Article  CAS  Google Scholar 

  10. G.-X. Wang andE. F. Matthys,Int. J. Rapid Solid. 6 (1991) 141.

    CAS  Google Scholar 

  11. Idem, Int. J. Heat Mass Transfer 35 (1992) 141.

    Article  CAS  Google Scholar 

  12. P. H. Shingu andR. Ozaki,Metall. Trans. 6A (1975) 33.

    Article  Google Scholar 

  13. D. E. Rosnar andM. Epstein,Chem. Eng. Sci. 30 (1975) 511.

    Article  Google Scholar 

  14. P. V. Evans andA. L. Greer,Mater. Sci. Eng. 98 (1988) 357.

    Article  CAS  Google Scholar 

  15. T. Bennett andD. Poulikakos,J. Mater. Sci. 29 (1994) 2025.

    Article  CAS  Google Scholar 

  16. B. Kang, Z. Zhao andD. Poulikakos,J. Heat Transfer 116 (1994) 436.

    Article  CAS  Google Scholar 

  17. J. Madejski,Int. J. Heat Mass Transfer 19 (1976) 1009.

    Article  Google Scholar 

  18. Idem, ibid. 26 (1983) 1095.

    Article  Google Scholar 

  19. C. G. Levi andR. Mehrabian,Metall. Trans. 13A (1982) 221.

    Article  CAS  Google Scholar 

  20. T. W. Clyne,ibid. 15B (1984) 369.

    Article  CAS  Google Scholar 

  21. S. V. Patankar, “Numerical heat transfer and fluid flow” (Hemisphere, New York 1981).

    Google Scholar 

  22. D. A. Anderson, J. C. Tannehill andR. H. Pletcher, “Computational fluid mechanics and heat transfer” (Hemisphere, New York, 1984).

    Google Scholar 

  23. L. E. Goodrich,Int. J. Heat Mass Transfer 21 (1978) 615.

    Article  Google Scholar 

  24. W. Ranz andW. Marshall,Chem. Eng. Progr. 48 (1952) 141.

    CAS  Google Scholar 

  25. ASM Metals Handbook, Vol. 9 “Metallography and microstructures”, 9th Edn (American Society for Metals, Metals Park, OH, 1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B., Waldvogel, J. & Poulikakos, D. Remelting phenomena in the process of splat solidification. J Mater Sci 30, 4912–4925 (1995). https://doi.org/10.1007/BF01154504

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01154504

Keywords

Navigation